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Supervisor’s Foreword

This thesis, by Dr. Yuta Michimura, represents experimental results on tests of
Lorentz invariance. Lorentz invariance, first suggested by the theory of special
relativity, is one of the fundamental principles in physics; any laws in physics
should be kept unchanged even when the observer is moving at constant velocity.
Passing every experimental tests in this more than 100 years, Lorentz invariance is
now forming a foundation of modern physics, such as the Standard Model of
particle physics and General Relativity. However, motivated by unification of
fundamental interactions, some theoretical works suggest that Lorentz invariance
may be only an approximation at attainable low energies. Experimental test of
Lorentz invariance may provide us an insight on ‘the theory of everything’.

In this work, Dr. Michimura mainly focused on test of odd-parity Lorentz
violation: difference of the speed of light in one way from the opposite way. He
constructed an laser interferometer rotated on a turn table so to modulate the
direction of the setup, and accumulated more than one-year observation data.
The interferometer is cleverly designed as a ring cavity containing a dielectric on
the optical path, and is carefully tuned to reach the sensitivity of dc=c� 10�15 level
for the difference of the speed of light. The data are analyzed to search Lorentz
violation, and then interpreted from the point of coefficients of spherical harmonic
function and from the point of the theory named Standard Model Expansion (SME).
As a result, no Lorentz violation was found, and the most stringent constraints so
far were set on the odd-parity Lorentz violation.

This thesis shows a current state-of-the-art experimental technique in funda-
mental physics. I hope the readers will learn the idea and schemes, and enjoy them.

Tokyo, Japan
January 2017

Prof. Masaki Ando
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Chapter 1
Introduction

Special Relativity is based upon twoαβ postulates, the special principle of relativity
and the principle of the constancy of the speed of light. Starting from these two
postulates, Einstein revealed that Lorentz transformation, not Galilean transforma-
tion, is the space-time coordinate transformation [1]. Special Relativity was the first
theory to propose that Lorentz invariance is the universal symmetry of space-time
and is valid not only for the Maxwell’s equations of electrodynamics, but also for
other laws of physics. Since Einstein’s first paper, wide variety of experimental tests
have been carried out for more than 100years, but no one could find any violation
[2–4]. As a consequence, Lorentz invariance underlies all the theories of fundamental
interactions, such as the Standard Model of particle physics and General Relativity.

However, theoretical works towards the unification of fundamental interactions,
such as string theories or loop quantum gravity, have led to the idea that Lorentz
invariance may only be approximate at attainable energies [5–7]. Also, the observed
anisotropyof the cosmicmicrowavebackground (CMB) suggests a possible preferred
frame in the Universe [8]. We could say that the dipole component of the CMB
anisotropy comes from red and blue shifts from our velocity with respect to the
CMB rest frame. If the CMB rest frame is the preferred frame, which is denied by
Special Relativity, our vision of the Universe will be turned upside down.

There are almost no quantitative predictions at what level we can observe Lorentz
violation. For example, Ref. [9] suggests Lorentz violation at 10−17 level, but this
number only comes from the ratio between the Planck mass and the electroweak
scale. Thus, we should perform experimental searches for Lorentz violations with
increasing precision. Even if we could not find any violation within the experimental
precision, we can restrict possible new theories.

Here, we test Lorentz invariance by testing the isotropy of the speed of light using
an optical ring cavity. Especially, we have tested if the speed of light propagating in
one direction and that in the opposite direction are the same. This one-way test cannot
be done with usual electromagnetic interferometers or cavities used for previous
Michelson-Morley type experiments. This is becauseusual interferometers or cavities

© Springer Nature Singapore Pte Ltd. 2017
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have closed paths for electromagnetic wave and can only measure the average speed
of light propagating back and forth.

We have solved this problem by placing a piece of dielectric material along one
side of the optical path of a triangular optical ring cavity. If there is a difference
between the speed of light propagating in opposite directions, the resonant frequen-
cies for the clockwise direction and the counterclockwise direction will be shifted
in opposite signs. Thus, we measured the resonant frequency difference between
two counterpropagating directions with double-pass configuration to get the Lorentz
violation signal. This double-pass configuration enables a null measurement of the
resonant frequency difference. Also, this differential measurement is highly insensi-
tive to environmental disturbances because the effects of cavity length fluctuations
are common to both resonances.

This thesis is organized as follows: Chap.2 introduces test theories of Special
Relativity and Lorentz invariance, and reviews previous tests of Lorentz invariance,
particularly in electrodynamics or photons. Chapter3 describes the experimental
principle of testing Lorentz invariance with an optical ring cavity. Also, noise sources
and noise requirements for improving previous upper limits on Lorentz violation are
discussed. Chapter4 describes the experimental setup and shows that our appara-
tus fulfilled the requirements. Chapter 5 explains how to extract Lorentz violation
parameters from the data taken and gives the result of the data analysis. Chapter 6
concludes the results of this work and gives future prospects of this research.

The author of this thesis tried to make this thesis readable for nonexperts of the
Standard Model Extension. Details of the analysis within the frame work of the
Standard Model Extension are described in Sect. 7.1.

We note here that the tests of Lorentz invariance in photons have also been done
very precicely with gamma ray astronomy, taking advantage of cosmological dis-
tances. From polarization measurements and light-curve measurements of light from
gamma ray burts, there are tight constraints on the vacuum birefringence [10, 11]
and the vacuum dispersion [12, 13]. However, anisotropy in the speed of light arises
from the different kind of Lorentz violation, which is hard to search with gamma ray
astronomy.

The author of this thesis designed and developed the experimental apparatus,
performed the year-long observation run, and did the data analysis. Nobuyuki Mat-
sumoto helped developing the optics and kept the laser frequency to be locked dur-
ing the observation run. Matthew Mewes theoretically analyzed the apparatus in the
framework of the Standard Model Extension. Masaki Ando provided the idea of
making use of double-pass configuration. Noriaki Ohmae, Wataru Kokuyama, and
Yoichi Aso gave important advice on optics and noise sources. Kimio Tsubono and
Masaki Ando were the supervisors and the leaders of our group. This work has been
done at the University of Tokyo.
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Chapter 2
Tests of Lorentz Invariance

Abstract Tests of Lorentz invariance have been performed in wide variety of fields
since Einstein’s special relativity was formulated more than 100 years ago. In this
chapter, we will review previous tests of Lorentz invariance, particularly in the field
of electrodynamics. Firstly, Sect. 2.1 introduces test theories of special relativity
and Lorentz invariance, which parameterize possible Lorentz violation. Section2.2
reviews previous tests of the constancy of the speed of light and shows current upper
limits on Lorentz violation. Section2.3 describes the purpose and the scope of our
experiment.

Keywords Lorentz invariance · Anisotropy · One-way speed of light

2.1 Test Theories

In order to compare the precision of various experimental tests of Lorentz invariance,
it is useful to introduce Lorentz violating parameters to physical theories. There are
various test theories which have their own sets of parameters depending on their
assumptions, but Robertson’s framework [1] developed in 1949 was one of the first
test theories of special relativity. In 1977, Mansouri and Sexl extended Robertson’s
framework, and their framework has beenwidely used in the tests of special relativity
[2–4]. Recently, the theoretical framework of the Standard Model Extension (SME)
[5] has been developed and used not only in the field of electrodynamics but also in
other interactions.

Here, we will describe assumptions and meanings of the Lorentz violating
parameters of those test theories. We will also introduce a spherical harmonic
decomposition of the light speed anisotropy to compare precision of each test more
phenomenologically.

© Springer Nature Singapore Pte Ltd. 2017
Y. Michimura, Tests of Lorentz Invariance with an Optical Ring Cavity,
Springer Theses, DOI 10.1007/978-981-10-3740-5_2
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6 2 Tests of Lorentz Invariance

Fig. 2.1 Preferred frame �

and inertial frame S which
moves with constant velocity
v, with respect to �

2.1.1 Robertson Framework

Robertson started constructing his framework from these two postulates:

• Postulate 1: There exists a preferred frame�(T, X,Y, Z), in which the constancy
of the speed of light holds true.

• Postulate 2: There is no preferred direction in �.

Let’s consider an inertial frame S(t, x, y, z)whichmoveswith constant velocity v,
with respect to �, as shown in Fig. 2.1. Robertson also assumed the use of Einstein’s
method to synchronize clocks at different coordinate points in S.

In Newtonian mechanics, time flows constantly at the same speed independent of
points, and a comparison of clocks at different points was just a technical problem.
However, in special relativity, it is no longer true and we have to take some way
to synchronize clocks. Einstein’s method was to sent a light signal back and force
between two points.

Consider synchronizing the clocks at points A and B in the frame S. A light
signal is sent out from A at time t = 0, as recorded by the clock at A, reflected at
B(t1, x1, y1, z1), and received back at A at clock time t2. By assuming

• Assumption: The time it takes for light to go back and forth is the same,

we can synchronize the clocks with

t1 = t2
2

. (2.1)

One can write the space-time coordinate transformation from � to S in the most
general linear form as

t = aT + εx + ε2y + ε3z,
x = b1T + bX + b2Y + b3Z ,

y = d1T + d2X + dY + d3Z ,

z = e1T + e2X + e3Y + eZ .

(2.2)

Parameters introduced here could be functions of the velocity of S. By using three
assumptions mentioned above, this transformation can be simplified into
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⎛
⎜⎜⎝

t
x
y
z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

γ /g0 −vγ /g0 0 0
−vγ /g1 γ /g1 0 0

0 0 1/g2 0
0 0 0 1/g2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

T
X
Y
Z

⎞
⎟⎟⎠ , (2.3)

where γ = 1/
√
1 − v2 [1]. This is the coordinate transformation in Robertson frame

work, and the metric in S may be written as

ds2 = −g20dt
2 + g21dx

2 + g22(dy
2 + dz2). (2.4)

Recall that Lorentz transformation between � and S is
⎛
⎜⎜⎝

t
x
y
z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

γ −vγ 0 0
−vγ γ 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

T
X
Y
Z

⎞
⎟⎟⎠ . (2.5)

By comparing this with Robertson’s transformation in Eq. (2.3), it is clear that g0,
g1 and g2 are the parameters for the time dilation, length contraction in the direction
of v, and length contraction in the direction orthogonal to v, respectively. In special
relativity, g0 = g1 = g2 = 1.

We can also derive the speed of light in S. Consider a light propagating in the
x-y plane of S in the angular direction θ from x-axis (Fig. 2.1). Relations between
coordinates in S are

x = c(θ)t cos θ,

y = c(θ)t sin θ,

z = 0.
(2.6)

The propagation of light can be expressed with a geodesic equation

− T 2 + X2 + Y 2 + Z2 = 0. (2.7)

By substituting (t, x, y, z) for (T, X,Y, Z) in Eq. (2.7) using Eqs. (2.3) and (2.6),
we obtain

c(θ) = g0√
g21 cos

2 θ + g22 sin
2 θ

. (2.8)

The speed of light is no longer constant in S and is anisotropic. Note that the speed
of light in S can also be dependent of v since gi ’s can be v-dependent.

Since Robertson used Einstein synchronization of clocks, c(θ) = c(θ + π).
Robertson framework is not a good framework for discussing tests of the isotropy of
the one-way speed of light.
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2.1.2 Mansouri–Sexl Framework

Mansouri and Sexl started from the same two postulates (Postulates 1 and 2 in the
previous section) Robertson assumed. However, instead of Einstein synchronization,
they used slow clock transport scheme for the clock synchronization in order to avoid
assuming c(θ) = c(θ + π). In the slow clock transport scheme, the clock is slowly
transported to one point and another to synchronize the clocks at different points. If
the speed of the clock being transported is small enough compared with the speed
of light, the effect of the time dilation will be negligible.

If we only assume Postulates 1 and 2 in the previous section, a general linear form
of coordinate transformations in Eq. (2.2) will be simplified into [2]

⎛
⎜⎜⎜⎜⎜⎝

t

x

y

z

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

a − εbv εb 0 0

−vb b 0 0

0 0 d 0

0 0 0 d

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

T

X

Y

Z

⎞
⎟⎟⎟⎟⎟⎠

. (2.9)

The speed of light in S can be derived in the same way as in the previous section:

c(θ) = εb(1 − v2) cos θ + av cos θ − a
√
cos2 θ + b2d−2(1 − v2) sin2 θ

[ε2b(1 − v2) − a2b−1 + 2εav] cos2 θ − a2bd−2 sin2 θ
. (2.10)

Here, let’s consider expanding the four parameters introduced in Mansouri–Sexl
framework, ε,a,b andd, with v. FromPostulate 2,a,b andd should be independent of
the direction, or sign, of v. The parameter ε is related to the clock synchronization and
should be an odd function of v. Also, Eq. (2.9) should be (T, X,Y, Z) = (t, x, y, z)
when v = 0. Thus, we can expand the four parameters as follows [6]:

ε(v) = εv(1 − ε2v2 + · · · ),
a(v) = 1 + αv2 + α2v4 + · · · ,

b(v) = 1 + βv2 + β2v4 + · · · ,

d(v) = 1 + δv2 + δ2v4 + · · · .

(2.11)

Equation (2.10) now can be rewritten as

c(θ) = 1−(ε+1)v cos θ −
(

β − δ + 1

2

)
v2 sin2 θ −(α−β+1)v2+O(v3). (2.12)

If we use slow clock transport for the clock synchronization,

ε = 2α (2.13)
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follows. Thus, the speed of light in S can be written up to the second order of v as

c(θ) = 1 − 2

(
α + 1

2

)
v cos θ −

(
β − δ + 1

2

)
v2 sin2 θ − (α − β + 1)v2. (2.14)

The use of the Einstein synchronization, on the other hand, ε = −1, and the
anisotropic term for the one-way speed of light will disappear. So, here we adopt the
slow clock transport for the clock synchronization. Details of the derivation can be
found in Refs. [2, 7].

In Special Relativity, c(θ) = 1 and therefore α = −1/2, β = 1/2, and δ = 0.
Also, it is clear that the combined parameters α + 1/2, β − δ + 1/2, and α − β + 1
represent the difference between the speed of light propagating in opposite directions,
directional dependence of the round-trip speed of light, and dependence of the speed
of light on the velocity of the light source, respectively. Each combined parameter is
measuredwith different types of experiments. Classically, types of those experiments
are called Ives–Stilwell type,Michelson–Morley type, andKennedy–Thorndike type
experiments, respectively.

Note that we have to set the preferred frame and the velocity of the laboratory
frame v in order to derive these Lorentz violation parameters from the experimental
data. One of themost natural candidates of the preferred frame is the CMB rest frame,
and this frame has been often used. The CMB rest frame is the frame on which the
dipole component of the measured CMB anisotropy cancels out. From the COBE
observation, the speed of our Sun with respect to the CMB rest frame is obtained to
be v = 369 km/s � 10−3c [8]. Since this speed is considered to be constant for our
timescale, these Lorentz violation parameters in the Sun centered frame are usually
shown after the data analysis.

2.1.3 Standard Model Extension

Robertson framework andMansouri–Sexl frameworkwere the test theories of special
relativity, and can only be used for the tests of Lorentz invariance in electrodynamics.
Since late 1990s, a test theory called Standard Model Extension (SME) [5, 9] has
been developed by Kostelecký and his co-workers to encompass all known physics
and all realistic violations of Lorentz invariance. Since then, the framework of the
SME has been widely used to compare the precision of various experimental tests,
and experimental results for the SME coefficients are summarized in the Data Tables
for Lorentz and CPT Violation [10].

The framework of the SME starts with adding Lorentz violating terms in the
Lagrangian density. When the Lorentz violating terms are added in the photon sector
of the Lagrangian density, the Maxwell equations are modified, which result in a
violation of the constancy of the speed of light. The Lorentz violating terms are
partially characterized by the mass dimension d of the operator. The effects from
higher d terms result in more complex form of the dependence of the speed of
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light on the source velocity, the polarization, the wavelength, and the propagation
direction. In particular, higher d terms result in more complex multipole structures
of the anisotropy.

For example, d = 4 terms give dipole and quadrupole structures, which resemble
the anisotropy in theone-way speedof light and round-trip speedof light, respectively.
d = 8 terms give dipole, quadrupole, and hexapole structures. d = 3 and d = 4
terms do not have photon momentum dependence, and they are renormalizable.
However, d > 4 terms have photon momentum dependence of pd−4, and they are
nonrenormalizable.

The restriction to renormalizable dimensions yields the so-called minimal SME
(mSME). The mSME has been studied extensively, and coefficients for the mSME
have been limited by a number of experiments. On the other hand, nonminimal terms
have received comparatively less attention due to the large variety and complexity
of the higher order violations. However, a recent theoretical work has established
phenomenology that opens up the nonminimal sector to experimentation [11]. The
push to consider nonminimal terms in the SME is motivated in part by the apparent
nonrenormalizability of gravity and by the possibility that higher-order violations
with d > 4 might dominate. Theories based on noncommutative spacetime coordi-
nates provide an example where Lorentz violation emerges in the form of operators
of nonrenormalizable dimension only [12, 13].

In this thesis, we focus on the higher order violations from d > 4 terms. In
particular, we focus on parity-odd higher order violations, since they have not been
explored yet. Detailed calculations are shown in Sect. 7.1.

2.1.4 Spherical Harmonic Decomposition of Anisotropy

Although the framework of Mansouri–Sexl and the Standard Model Extension have
been widely used to compare the upper limits of Lorentz invariance tests, they are
not intuitive to be used for comparing experimental precision of each test. This is
because the parameters introduced do not directly reflect the relative speed of light
difference, δc/c.

To compare the precision more phenomenologically, it is useful if we simply
expand the light speed anisotropy, without any theoretical assumptions or back-
ground. Using the spherical harmonics (Fig. 2.2)

Ym
l (θ, φ) = (−1)m

√
2l + 1

4π

(l − m)!
(l + m)! P

m
l (cos θ)eimφ, (2.15)

the speed of light can be expanded as

c(θ, φ) = 1 +
∞∑
l=0

l∑
m=0

Re
[
( y¬m

l )∗Ym
l (θ, φ)

]
. (2.16)

http://dx.doi.org/10.1007/978-981-10-3740-5_7
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Fig. 2.2 Spherical (left) and atomic orbital (right) visualization of spherical harmonics. Red por-
tions represent where the function is positive, and blue portions represent where the function is
negative

Here, θ ∈ [0, π ] and φ ∈ [0, 2π) is the polar angle and the azimuthal angle of the
spherical coordinates, respectively. Pm

l is associated Legendre polynomials, and l

and m are integers. y¬m

l are the complex anisotropy spherical coefficients which are
zero when Lorentz invariance holds, and ∗ represents the complex conjugate.

l = 0 term in Eq. (2.16) represents the isotropic shift of the speed of light and can
be assigned to multiple Lorentz violations, such as dependence of the speed of light
on the source velocity, polarization, or wavelength. In this thesis, we will neglect
these terms because of the two reasons. One reason is because the leading order
source velocity modulation only occurs at the period of a year from the revolution
of the Earth around the sun. The other reason is because there are strict bounds on
the Lorentz violation which cause the birefringence and dispersion. The detailed
discussions will be addressed in Sect. 7.1.1.

l = 1, 2, 3, . . . terms represent the dipole, quadrupole, hexapole, ... components
of the anisotropy of the speed of light and can be measured separately by paying
attention to the different types of rotational symmetries. l = 2k + 1 terms can be
measured with Ives–Stilwell type, or odd-parity, experiments, and l = 2k terms can
be measured with Michelson–Morley type, or even-parity, experiments.

This framework of the spherical harmonic decomposition is also useful to do an
analysis of anisotropy data independent of the choice of test theory. In this thesis, we
will use this framework first to do an analysis and to show the experimental precision,
and then do an analysis in the framework of the SME. It is natural to consider the
spherical harmonic decomposition considering the fact that the SME also predicts
multipole structure of the anisotropy.

http://dx.doi.org/10.1007/978-981-10-3740-5_7
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2.2 Previous Tests of Lorentz Invariance

There has been a tremendous number of experimental tests of Lorentz invariance
performed in a wide variety of fields. One of the most traditional and direct ways to
test Special Relativity is to test the constancy of the speed of light. These tests are
considered as tests of Lorentz invariance in electrodynamics, or in photons.

Here, we will review previous tests of the constancy of the speed of light and
show current upper limits on Lorentz violation.Wewill classify those tests into Ives–
Stilwell type [14], Michelson–Morley type [15], and Kennedy–Thorndike type [16]
experiments. Ives–Stilwell type experiments search for the odd-parity components
of the light speed anisotropy, and Michelson–Morley type experiments search for
the even-parity components. Kennedy–Thorndike type experiments search for the
source velocity dependence of the speed of light.

There are also other types of tests of Lorentz invariance in electrodynamics, such
as the independence of the speed of light on the polarization or the wavelength. These
are tested to very high precision by astrophysical observations, since the effects of
Lorentz violation are enhanced by the cosmological distances. Bounds on those
Lorentz violations are given in the framework of the SME, so we will review these
tests in Sect. 7.1.1.

2.2.1 Michelson–Morley Type Experiments

Michelson–Morley type experiments look for the directional dependence of the
round-trip speed of light. In the Mansouri–Sexl frame work, these experiments can
be considered as measurements of β − δ + 1/2. In the framework of the Standard
Model Extension, these experiments are measurements of the parity-even Lorentz
violating parameters of the photonic sector.

2.2.1.1 Michelson–Morley Experiment

The first search for the anisotropy in the speed of light was originally done by
Michelson and Morley in 1887 [15], as a measurement of the velocity of the ether
wind. An apparatus they used is known as a Michelson interferometer shown in
Fig. 2.3. The light from the source was split into two orthogonal paths by a beam
splitter, and each beam was reflected back with a mirror. They tried to measure
the difference between the speed of light propagating in the two directions as an
interference fringe, since two beams interfere when coming back to the beam splitter
again.

In Mansouri–Sexl framework, the round-trip phase difference between the two
beams can be written as

http://dx.doi.org/10.1007/978-981-10-3740-5_7


2.2 Previous Tests of Lorentz Invariance 13

Fig. 2.3 Michelson
interferometer

φ− =
(

lω

c(θ)
+ lω

c(θ + π)

)
−

(
lω

c(θ + π/2)
+ lω

c(θ + 3π/2)

)

= −2lω

(
β − δ + 1

2

)
v2 cos 2θ, (2.17)

where l ≡ lx = ly is the arm length of the Michelson interferometer, and ω is the
angular frequency of the light. If there exists an ether wind, an interference pattern
changes as the interferometer rotates and θ changes. Michelson and Morley looked
for the fringe change as they rotate the interferometer which was floated in a mercury
pool, but they could not find any significant change.

Their experimental precision can be evaluated with the upper limit on the
Mansouri–Sexl parameter as [4]

|β − δ + 1/2| � 10−3. (2.18)

This is equivalent to ∣∣∣∣
δc

c

∣∣∣∣ � 10−9 (2.19)

of the fractional change in the speed of light.

2.2.1.2 Brillet–Hall Experiment

Since the first experiment byMichelson andMorley, the anisotropy searches had been
repeatedly performed as measurements of the velocity of the ether wind. The major
breakthrough for the improvement of the sensitivity was brought by an invention of
lasers in 1960. Among experiments done after the invention of lasers, an experiment
by Brillet and Hall in 1979 [17] was especially a milestone experiment. To test the
isotropy of the speed of light, they measured the change in the resonant frequency of
a Fabry–Perot cavity (see Sect. 7.3.1) as they rotate the cavity. As shown in Fig. 2.4,
they locked the laser frequency to the resonant frequency of the rotating Fabry–Perot
cavity, and took the beat signal from the laser and another stationary laser to measure
the resonant frequency shift from rotation.

http://dx.doi.org/10.1007/978-981-10-3740-5_7
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Fig. 2.4 Brillet–Hall
experiment

In Mansouri–Sexl framework, the resonant frequency of a Fabry–Perot cavity
with the cavity length of L can be written as

ν = m

(
c(θ)

L
+ c(θ + π)

L

)

= m

2L

[
1 −

(
β − δ + 1

2

)
v2 cos 2θ − 2(α − β + 1)v2

]
, (2.20)

where m is a natural number. Thus, if v is constant during the measurement, we can
measure the directional dependence of the round-trip speed of light by extracting
twice the cavity rotation frequency component of the beat frequency change. The
fractional speed of light change they measured was

δc

c
= (1.5 ± 2.5) × 10−15. (2.21)

Their experimental precision was limited by the cavity deformation caused by the
change of the cavity tilt in the rotational period. Amazingly, their precision was so
high that it was the most precise measurement in the world until 2000s.

2.2.1.3 Recent Cavity Experiments

In 2000s, European groups started competing with each other by introducing modern
techniques, such as cryogenic operation, ultra-high vacuum, and high level vibration
isolation. The most stringent upper limit at this point is given by an experiment done
by Eisele et al. [18], and their upper limit was

β − δ + 1/2 = (−1.6 ± 6 ± 1.2) × 10−12, (2.22)

in Mansouri–Sexl framework. Since the anisotropy in the round-trip speed of light
can be written as (β − δ + 1/2)v2 cos 2θ , this is equivalent to putting an upper limit
of
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Fig. 2.5 Michelson–Morley
type experiment with two
orthogonal Fabry–Perot
cavities

∣∣∣∣
δc

c

∣∣∣∣ � 9 × 10−18 (2.23)

to the fractional change in the speed of light. Herrmann et al. [19] also reported a
comparable upper limit at almost the same time.

As shown in Fig. 2.5, they locked two laser frequencies to two orthogonal Fabry–
Perot cavities, and measured the beat frequency of the two lasers to look for
the anisotropy. Since they used two Fabry–Perot cavities, their sensitivity to the
anisotropy is simply twice the Brillet–Hall experiment. Moreover, they fabricated
two Fabry–Perot cavities with a single spacer to make use of a high common mode
rejection of environmental disturbances. For example, the cavity length fluctuation
caused by the temperature fluctuation is mostly common to both cavities, and won’t
effect the beat signal.

The cavity deformation due to the tilt change, however, is also unavoidable in this
setup. The first uncertainty in Eq. (2.22) is the statistical uncertainty, and the second
uncertainty is the systematic uncertainty in the tilt measurement. In their experiment,
they monitored the tilt of the cavity and subtracted the effect from the beat signal,
and this was the main cause of the systematic uncertainty.

Also, there is a similar experiment done by using two orthogonally aligned cryo-
genic sapphire oscillators [20]. They analyzed their year-long data within the frame-
work of the Standard Model Extension and placed bounds on parity-even higher
order Lorentz violating coefficients. Their bounds in terms of δc/cwas at 10−16 level,
and the analysis was done up to d = 8 camouflage coefficients (see Sect. 7.1.1.2).
This means that they put upper limits on quadrupole and octupole components of
anisotropy.

http://dx.doi.org/10.1007/978-981-10-3740-5_7
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2.2.2 Kennedy–Thorndike Type Experiments

Kennedy–Thorndike type experiments search for the dependence of the speed of
light on the source velocity. In the Mansouri–Sexl frame work, these experiments
can be considered as measurements of α − β + 1. In the framework of the Standard
Model Extension, these experiments are measurements of the isotropic shift of the
speed of light κ̃tr .

2.2.2.1 Kennedy–Thondike Experiment

If the lengths of two orthogonal arms of a Michelson interferometer are different,
it will be sensitive to the source velocity dependence of the speed of light. In the
Mansouri–Sexl framework, the round-trip phase difference between the two beams
of an asymmetric Michelson interferometer can be written as

φ− =
(
lxω

c(θ)
+ lxω

c(θ + π)

)
−

(
lyω

c(θ + π/2)
+ lyω

c(θ + 3π/2)

)

= 2lxω

(
β − δ + 1

2

)
v2 sin2 θ − 2lyω

(
β − δ + 1

2

)
v2 cos2 θ

+2(lx − ly)ω (α − β + 1) v2. (2.24)

Tighter constraints are set on β − δ + 1/2 by Michelson–Morley type experiments,
so first two terms can be neglected for the measurement of α − β + 1. Since the
Earth goes around the sun with the velocity of about 30 km/s ∼ 10−4c, v changes
over a year. Thus, by measuring the interference fringe change in a period of a year,
α − β + 1 can be measured.

In 1932, Kennedy and Thorndike firstly demonstrated the measurement based on
this principle [16]. Their upper limit in Mansouri–Sexl parameter was [4]

α − β + 1 � (2 ± 2) × 10−2. (2.25)

Since the velocity modulation is on the order of δv � 10−4, this is equivalent to
putting an upper limit of

∣∣∣∣
δc

c

∣∣∣∣ � 2 × 10−2 × [(v + δv)2 − v2] ∼ 5 × 10−9 (2.26)

to the fractional change in the speed of light.
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2.2.2.2 Recent Cavity Experiments

Recently, the dependence of the speed of light on the source velocity is measured
using cavities. As apparent from Eq. (2.20), the resonant frequency of a cavity will
have v dependence if there is Lorentz violation. The current best upper limit is given
by Tobar et al. [21]. By measuring the frequency difference between a cryogenic
sapphire oscillator and a hydrogen maser for 6 years, they gave

α − β + 1 = (−4.8 ± 3.7) × 10−8. (2.27)

This is equivalent to putting an upper limit of

∣∣∣∣
δc

c

∣∣∣∣ � 3.7 × 10−8 × [(v + δv)2 − v2] ∼ 9 × 10−15 (2.28)

to the fractional change in the speed of light.

2.2.3 Ives–Stilwell Type Experiments

Ives–Stilwell type experiments look for the difference between the speed of light
propagating in opposite directions. In the Mansouri–Sexl frame work, these exper-
iments can be considered as measurements of α + 1/2. In the framework of the
Standard Model Extension, these experiments are measurements of the parity-odd
Lorentz violating parameters of the photonic sector.

2.2.3.1 Ives–Stilwell Experiment

The frequency of the laser which is absorbed by fast moving atoms or ions will be
shifted by Doppler effect when applying the light in parallel and antiparallel to the
particles’ motion, as shown in Fig. 2.6. This Doppler shift was firstly measured with
hydrogen atoms by Ives and Stilwell in 1938 [14].

If the resonance frequency at the atoms’ rest frame is ν0, and the Doppler-shifted
frequencies in parallel and antiparallel are νp and νa, respectively, an equation

ν2
0 = νpνa (2.29)

Fig. 2.6 Ives–Stilwell
experiment with lithium ions
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holds for the Special Relativity. However, this is not true if Lorentz invariance is
violated. Instead, in Mansouri–Sexl framework,

νpνa

ν2
0

= 1 + 2

(
α + 1

2

)
(v2atom + 2v · vatom), (2.30)

where vatom is the speed of atoms [22].
Thus, bymeasuring νp and νa,α+1/2 can bemeasured. The currentmost stringent

upper limit is set by the experiment done by Reinhardt et al. [22], and they used
lithium ions at two different velocities. They used an optical frequency comb for the
measurement of the resonance frequency, and the current precision inMansouri–Sexl
framework is

α + 1/2 = (−4.8 ± 8.4) × 10−8. (2.31)

Since the anisotropy in the one-way speed of light is expressed by 2(α+1/2)v cos θ ,
this upper limit is equivalent to

∣∣∣∣
δc

c

∣∣∣∣ � 2 × 8.4 × 10−8v ∼ 2 × 10−10 (2.32)

of the fractional hange in the speed of light.

2.2.3.2 Clock Comparison Experiments

The difference between the speed of light propagating in opposite directions can also
be measured by comparing the phases of two clocks at distant places.

Suppose there are two clocks at the positions A and B as shown in Fig. 2.7.
The distance between A and B is D, and the angle between the vector AB and the
laboratory velocity vector v is θ . If we send a clock signal from the position A to B,
and compare its phase with a clock signal at the position B, the phase difference can
be written as

φ = φ0 + Dω

c(θ)
= φ0 + Dω + 2Dω

(
α + 1

2

)
v cos θ + O(v2), (2.33)

in the Mansouri–Sexl framework. Here, φ0 is the phase offset between the origins
of the clocks at the positions A and B, and is constant if the two clocks are moving

Fig. 2.7 Clock comparison
experiment
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slowly enough compared with the speed of light. Thus, by measuring dependence of
φ on θ , α + 1/2 can be measured.

Krisher et al. [23] reported the upper limit on α + 1/2 by measuring the sidereal
change in the phase difference of two hydrogen-maser frequency standards on the
Earth placed 21km away from each other. Wolf et al. [24] did the similar experiment
with a hydrogen maser on the Earth, and Caesium and Rubidium atomic clocks on
GPS satellites. The upper limit from the latter measurement was more stringent, and
it was

|α + 1/2| < 1 × 10−6. (2.34)

This upper limit is equivalent to

∣∣∣∣
δc

c

∣∣∣∣ � 2 × 1 × 10−6v ∼ 2 × 10−9 (2.35)

of the fractional change in the speed of light.

2.2.3.3 Trimmer Experiment

As shown in Eq. (2.17), the difference between the speed of light propagating in
opposite directions cannot be measured using Michelson interferometers. This is
because Michelson interferometers change their fringes when the round-trip phase
of the light change. Other usual interferometers, including cavities, also have closed
loops, and so they cannot be used for searches for anisotropy in the one-way speed of
light. For example, in the Mansouri–Sexl framework, the phase shift of light created
in a closed loop propagation can be written as

φloop =
∮

dlω

c(θ)

�
∮

dlω

[
1 + 2

(
α + 1

2

)
v cos θ

]

=
∮

dlω, (2.36)

and the one-way anisotropy term is canceled out.
However, if the refractive index changes in a closed loop, the one-way anisotropy

term remains. The experiment done by Trimmer et al. [25] in 1973 was the first
experiment to utilize this idea. They searched for the anisotropy by placing a piece
of glass in a Sagnac interferometer as shown in Fig. 2.8.

The phase difference between the light propagating in the clockwise direction and
that in the counterclockwise direction in this Sagnac interferometer can be written
as

φ− = 4(n − 1)dω

(
α + 1

2

)
v cos θ, (2.37)
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Fig. 2.8 Trimmer
experiment with the Sagnac
interferometer with a glass
piece

where θ is the angle between the laboratory frame velocity v and the vector along
the glass piece, n and d are the refractive index and the length of the glass piece,
respectively. Thus, α + 1/2 can be measured when n 	= 1. This is because the
directions of light propagation in the glass piece are opposite between the clockwise
and the counterclockwise propagation.

In the paper by Trimmer et al., they expressed the anisotropy as

1

c(θ)
= 1 + b1P1(cos θ) + b3P3(cos θ), (2.38)

where Pl are the Legendre polynomials. The measurement for the anisotropy that
behaves as the first Legendre polynomial was

b1 = (0.1 ± 8.4) × 10−11, (2.39)

and that for the third Legendre polynomial was

b3 = (2.3 ± 1.5) × 10−11. (2.40)

2.2.3.4 Recent Cavity Experiments

Recently, improving the sensitivity by changing the Trimmer-type triangular Sagnac
interferometer to a ring cavity was proposed [26, 27] and demonstrated [28, 29].
Baynes et al. [28, 29] looked for a nonzero resonant frequency difference between
two counterpropagating directions of an asymmetric optical ring cavity. Their exper-
imental setup is shown in Fig. 2.9. The asymmetric optical ring cavity was made
with three mirrors and a piece of glass was placed along one side of the triangle.
They locked the frequency of the two laser sources to the resonant frequencies of
two counterpropagating directions and compared the frequency of the two.

Their upper limit on the fractional change in the speed of light was

∣∣∣∣
δc

c

∣∣∣∣ � 2 × 10−13. (2.41)
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Fig. 2.9 Experimental setup of Baynes et al. using asymmetric optical ring cavity. Note that their
setup is slightly different from this figure since they split the beam from one source into two, and
used an acousto-optic modulators to shift the frequency of the two, instead of using the second laser

This limit was achieved by using data taken for 2 months.

2.2.3.5 Compton Scattering Experiment

The current best limit on anisotropy in the one-way speed of light is obtained by a
Compton scattering experiment. When low energy photons are head-on scattered by
relativistic electrons, the energy of the scattered photons in the laboratory frame can
be written as [30]

E ′
γ (ϕ) = 4γ 2Eγ

1 + 4γ Eγ /me + ϕ2γ 2
, (2.42)

where ϕ is the angle between the scattered photon and the incident direction of the
electron (see Fig. 2.10), γ and me is the Lorentz factor and the mass of the electron,
respectively. The maximum energy of the scattered photons is obtained when ϕ = 0,
and is called the Compton edge energy ECE

0 ≡ E ′(0).
This Compton edge energy will be modified when there is light speed anisotropy,

since the dispersion relation of photons will be modified as

ω = (1 − κ · k̂)k, (2.43)

Fig. 2.10 Compton
scattering experiment
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where ω and k are the angular frequency and the wave number of photons, respec-
tively. k̂ is a unit three-dimensional vector and κ is a three-dimensional vector of
Lorentz violation parameters. In this case, the Compton edge energy will bemodified
as

ECE = ECE
0

[
1 + 2γ 2

(1 + 4γ Eγ /me)2
κ · k̂

]
. (2.44)

Thus,when the propagation direction of photons k̂ changes, theCompton edge energy
should change.

Bocquet et al. [31] used ultraviolet laser and 6.03 GeV electrons to measure the
Compton edge energy at the European Synchrotron Radiation Facility’s GRAAL
facility. They took data for a week and searched for the sidereal variations in the
Compton edge energy. No significant variation was found and they yielded the con-
straint on the Lorentz violation parameters as

√
κ2
X + κ2

Y < 1.6 × 10−14. (2.45)

This means that their upper limit on the fractional change in the speed of light was

∣∣∣∣
δc

c

∣∣∣∣ < 1.6 × 10−14. (2.46)

Note that their upper limit is given at 95% confidence level. Limits from the other
experiments discussed in this section are usually given at 1σ level.

The indices J for κJ in Eq. (2.45) runs from X to Z, which represent the spatial
coordinate axes of the sun-centered celestial equatorial frame (SCCEF) defined in
Sect. 5.1.1. They did not put separate upper limits on κX and κY since they only
measured the sidereal modulation amplitude, and did not account for the phase of
the variation. Also, since the Z -axis is aligned with the Earth’s rotational axis and
they only use the Earth’s rotation to modulate the propagation direction of the speed
of light, it is not possible to measure κZ with their setup.

Cavity experiments, on the other hand, can measure each component of the
anisotropy separately by doing the phase sensitive analysis and by rotating the
apparatus.

2.3 Purpose of Our Experiment

We have reviewed the previous Michelson–Morley type, Kennedy–Thorndike type,
and Ives–Stilwell type experiments. Table2.1 summarizes the current best sensitiv-
ities on each anisotropy component. The current upper limits on even-parity and
odd-parity components of the light speed anisotropy were at 10−17 level and 10−14

http://dx.doi.org/10.1007/978-981-10-3740-5_5
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Table 2.1 Summary of previous experiments with the current best sensitivities in terms of δc/c

l 1 dipole 2 quadrupole 3 hexapole 4 octupole

Eisele+ [18] No access 9 × 10−18 No access No analysis

Parker+ [20] No access ∼10−16 No access ∼10−16

Baynes+ [29] 2 × 10−13 No access No analysis No access

Bocquet+ [31] 1.6 × 10−14 (*) No access No analysis No access

This work Improve limits No access First analysis No access
∗Note that the limit from Bocquet et al. is at 95% confidence level, while others are at 1σ . Also,
the experiment done by Bocquet et al. cannot put limits on all the individual components for dipole
anisotropy

level at the fractional change in the speed of light, respectively. The source velocity
independence of the speed of light was tested at 10−15 level.

Although upper limits on the odd-parity components were improved by about 3
orders of magnitude by using asymmetric optical ring cavity, instead of fast ions,
they were less stringent by 3 orders of magnitude as compared with even-parity
components. The purpose of our experiment is to improve the sensitivity in searching
for the odd-parity anisotropy components by refining the setup using asymmetric
optical ring cavity.

Also, we will do the data analysis in the framework of the spherical harmonic
decomposition and the SME to do the search for the higher order Lorentz violations.
Our ring cavity is sensitive to the parity-odd violations, which had not been searched
for.

2.4 Summary of This Chapter

• Robertson framework,Mansouri–Sexl framework, and the StandardModel Exten-
sion (SME) are the test theories of special relativity and Lorentz invariance. The
latter ones include more different types of the violations of the constancy of the
speed of light.

• The SME introduces birefringence, dispersion, and multipole structures of the
anisotropy.

• The spherical harmonic decomposition of the anisotropy, and its spherical coef-
ficients y¬m

l were introduced. y¬m

l represent the size of the anisotropy for each
component.

• The current upper limits on anisotropy in the round-trip and one-way speed of
light are |δc/c| � 10−17 and |δc/c| � 10−14 level, respectively. The former
was given by the cavity experiments. The latter cannot be measured by simple
interferometers or cavities, and the current best limit was given by the Compton
scattering experiment.
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• Anisotropy in the one-way speed of light can be measured by the asymmetric ring
cavity, which has a dielectric piece inside the ring.

• The purpose of our experiment is to measure anisotropy in the one-way speed of
light with improved sensitivity. Also, we search for the parity-odd higher order
Lorentz violation for the first time.
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Chapter 3
Optical Ring Cavity

Abstract In this chapter, we will show the experimental principle of testing Lorentz
invariance with an optical ring cavity. In Sect. 3.1, the experimental principle is
explained, and a double-pass configuration which we will employ is introduced.
Section3.2 shows the sensitivity goal to improve the current upper limits, and various
noise sources and their requirements are described in Sect. 3.3.

Keywords Optical ring cavity · Double-pass configuration · Noises

3.1 Experimental Principle

A ring cavity will have direct sensitivity to the odd-parity Lorentz violation if the
refractive index changes asymmetrically through its path. The resonant frequency
will be shifted if there is Lorentz violation. As the signs of the frequency shift
are opposite between the clockwise and counterclockwise directions, measuring the
resonant frequency difference between two counterpropagating directions gives us
the Lorentz violation signal.We use a double-pass configuration to do this differential
measurement.

3.1.1 Principle

To show the experimental principle briefly, we simplify the spherical harmonic
decomposition of the light speed anisotropy in Eq. (2.16) as

c(θ) = 1 + 1

2
√

π
y¬0
1 cos θ, (3.1)

and ignore any other terms.
Consider a triangular ring cavity which consists of 3 mirrors, M1, M2, and M3,

and a dielectric material as shown in Fig. 3.1. The length and the refractive index of
the material are d and n, respectively.

© Springer Nature Singapore Pte Ltd. 2017
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Fig. 3.1 An optical ring
cavity containing a dielectric

If we write the counterclockwise resonant frequency of the ring cavity as ν+, the
resonant condition (see Eq. (7.43)) can be written as

m

ν+
= (l1 − d)

c(θ)
+ nd

c(θ)
+ l3

c(θ − θ2 + π)
+ l2

c(θ + θ3 + π)
, (3.2)

using a natural number m. By inserting Eq. (3.1) to the equation above,

m

ν+
� l1 − d + nd + l2 + l3

− 1

2
√

π
y¬0
1 [(l1 − d) cos θ + nd cos θ − l3 cos (θ − θ2) − l2 cos (θ + θ3)]

= L + (n − 1)d − 1

2
√

π
y¬0
1 (n − 1)d cos θ. (3.3)

Here, L ≡ l1 + l2 + l3.
Similarly, the clockwise resonant frequency ν− follows the equation

m

ν−
= L + (n − 1)d + 1

2
√

π
y¬0
1 (n − 1)d cos θ. (3.4)

If there is no Lorentz violation and y¬0
1= 0, the resonant frequencies are

ν = m/[L + (n − 1)d] for both directions, but the resonant frequencies are shifted
in opposite signs when Lorentz invariance is violated. Also, this shift cannot be mea-
sured when n = 1, and changing the refractive index of a portion of the optical path
is the key for this measurement.

The resonant frequency difference between both directions is

δν

ν
≡ ν+ − ν−

ν
= (n − 1)d

L + (n − 1)d

1√
π

y¬0
1 cos θ. (3.5)

This difference signal is zero when there is no Lorentz violation. In our experiment,
we record this Lorentz violation signal as we rotate the ring cavity and modulate θ .

By demodulating the data with the rotational frequency, y¬0
1 can be extracted. Other

y¬m

l with odd l can also be measured similarly.

http://dx.doi.org/10.1007/978-981-10-3740-5_7
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The optical path of a ring cavity is determined uniquely when arrangements of
consisting mirrors are fixed. The optical paths are exactly the same for the counter-
clockwise and the clockwise directions. Thus, even if the cavity length fluctuated
because of temperature fluctuations or tilt fluctuations, ν+ and ν− fluctuates in-phase,
and δν ≡ ν+ − ν− does not change. This common mode rejection is a big merit of
this differential measurement.

It is possible that the refractive index also has the directional dependence. Modifi-
cation of the Maxwell’s equations could result in both of the directional dependence
of the speed of light and the refractive index, and their effects could cancel each
other. However, an example modification of the Maxwell’s equations that does not
cancel the effect is already proposed (e.g. Ref. [1]). The directional dependence
of the refractive index is also the Lorentz violation, but it is considered to be the
Lorentz violation in electrons, not in photons. In our experiment, we assume that the
Lorentz invariance holds in the electron sector, and search for the Lorentz violation
in photons.

3.1.2 Double-Pass Configuration

One of the most straightforward methods to compare the counterclockwise and the
clockwise resonant frequencies is to prepare two laser sources and lock the laser
frequencies of the two to each resonance, as shown in Fig. 2.9. Baynes et al. used
this method and compared the laser frequencies of the two.

However, the frequencies of the two laser beams have to be different by more
than a few hundred Hz to use this method in real life. The counterclockwise and
the clockwise beams couple to each other via backscattering inside the cavity, and
the coupling effect is fed back to the laser frequency by the servo. This feedback
makes the frequencies of the two laser sources to be the same even if there is the
resonant frequency difference between counterpropagating directions because of
Lorentz violation.

This lock-in behavior is also a problem in ring laser gyroscopes [2]. In order to
avoid this lock-in behavior, the frequencies of the two laser sources must have the
frequency offset which is multiples of a free spectral range to each other. This offset
prevents the measurement to be null.

Instead, we employed the configuration called double-pass. A double-pass con-
figuration was originally proposed for use in mode cleaners for interferometric grav-
itational wave detectors [3, 4]. Our optical setup using a double-pass configuration
is shown in Fig. 3.2.

First, we get the error signal which is proportional to the difference between the
laser frequency and the counterclockwise resonant frequency ν+ using the photode-
tector PD1, and lock the laser frequency to ν+. The cavity transmitted beam which
has the frequency of ν+ is reflected back into the cavity by a mirror MR, and injected
in the clockwise direction this time. If the clockwise resonant frequency ν− is equal
to ν+, the reflected beam also resonates in the cavity. However, if there is a difference,

http://dx.doi.org/10.1007/978-981-10-3740-5_2
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Fig. 3.2 Our optical setup
using a double-pass
configuration

we can get the signal which is proportional to the difference δν ≡ ν+ − ν− from the
second reflection on the photodetector PD2.

The error signal from the PD2 is the Lorentz violation signal on its own, and there
exist only beams with the same frequency. Thus, there is no mechanism for lock-in
behavior. This double-pass configuration is the method which make the best out of
the ring cavity, and allows high-precision null measurement of the Lorentz violation.

3.1.3 Advantages Compared with Previous Experiments

As we saw in Sect. 2.2.3, Ives–Stilwell type interferometric tests of isotropy of the
speed of light was firstly done by Trimmer et al. in 1973. They used a Sagnac inter-
ferometer, but in Sagnac interferometers, positions or alignments of mirrors change
the optical paths of counterpropagating directions, and thus temperature fluctuation
and similar environmental disturbances will be noise sources. In ring cavities, how-
ever, effects from environmental disturbances are suppressed because of the high
common mode rejection. Until recently, an improvement of Trimmer experiment by
using a ring cavity has not been carried out.

The first ring cavity test of isotropy of the speed of light was done by Baynes
et al. [5], and they reported the results in October 2011. They first used the Earth’s
rotation alone to modulate the signal, but they also reported the rotating experiment
in June 2012 [6]. The setup they used was to use two laser sources as shown in
Fig. 2.9. They did not do the constant speed rotation. The cavity was rotated for 180◦
each time, and the data were taken for ∼10min at each orientation when the cavity
was stationary.

On the other hand, we rotate the cavity at the constant speed, and data are taken
continuously during the rotation. The rotational period of our experiment is 12 s.
Generally, noise level at higher frequency is smaller, so higher rotational frequency
is better. Also, we use a double-pass configuration as shown in Fig. 3.2. This double-
pass configuration enables a null measurement of the resonant frequency difference
with a simpler configuration than that of Refs. [5, 6]. Also, stabilizing the frequen-
cies of two counterpropagating beams of a ring cavity has the possibility of lock-in
behavior [2], which is a common effect in ring laser gyroscopes.

http://dx.doi.org/10.1007/978-981-10-3740-5_2
http://dx.doi.org/10.1007/978-981-10-3740-5_2
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Also, we use silicon as a dielectric material since its refractive index and transmit-
tance is high at thewavelength of 1550nm. Comparedwith using optical glass, which
has n = 1.44 at the wavelength of 1064nm, silicon with n = 3.69 gives approxi-
mately 4 times better sensitivity to the Lorentz violation (see Eq. (3.5)).

Moreover, the number of the Lorentz violation coefficients that can be accessed by
our experiment is larger than the previous experiments. Because data were not taken
continuously during the cavity rotation, Baynes et al. could only access to the Lorentz
violation coefficients which are related to the dipole structure of the anisotropy. The
Compton scattering experiment done at the GRAAL facility [7] cannot access to
the coefficients which are related to the Z -axis symmetric anisotropies, as discussed
in Sect. 2.2.3. On the contrary, our setup can access all the coefficients related to
parity-odd violations.

3.2 Sensitivity Goal

The goal of our experiment is to measure the anisotropy in the one-way speed of
light to the level better than the current best limit obtained by a cavity experiment.
The limit is shown in Eq. (2.41), and this means that we have to measure y¬m

1 at better
than 10−13 level. Here, we estimate the sensitivity goal to fulfill this requirement.

As we have shown in the previous section, the anisotropy signal s(t) is given by
Eq. (3.5), and

s(t) = δν

ν
= (n − 1)d

L + (n − 1)d

1√
π

y¬0
1 cos θ. (3.6)

If we ignore the Earth’s rotation, θ � ωrott , and thus ωrot component of s(t) gives

y¬0
1. The Fourier amplitude ξ at ωrot can be written as

ξ ∼
√∣∣∣∣

2

N
S(ωrot)

∣∣∣∣
2

, (3.7)

where S(ω) is the discrete Fourier transform of s(t), and N is the number of data
points.

On the other hand, using the sampling frequency fs, the power spectral density
of s(t) at ωrot can be written as

Ps(ωrot) =
√

1

N fs
|S(ωrot)|2. (3.8)

Power spectral density is often used for evaluating a noise level or a sensitivity level
of a system in the frequency domain, and also called noise spectrum.

http://dx.doi.org/10.1007/978-981-10-3740-5_2
http://dx.doi.org/10.1007/978-981-10-3740-5_2
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From Eqs. (3.7) and (3.8), using Ps(ωrot), ξ can be written as

ξ ∼ 2√
T
Ps(ωrot). (3.9)

Here, T = N/ fs is the measurement time, and from this equation, it is clear that the
measurement precision is inversely proportional to the square root of the measure-
ment time.

Our requirement is to determine y¬m

1 at level better than 10−13, so requirement for
ξ determination is 10−13. If we set the measurement time to be 1year, T = 3 × 107 s,
requirement for the noise at ωrot is roughly

Ps(ωrot) � 10−10/
√
Hz. (3.10)

In the remaining part of this thesis, we use the same symbols for time series data
like s(t) and spectrum data like Ps(ω). This is possible since we deal with linear
response system.

3.3 Noise Sources and Requirements

Since we search for Lorentz violation by comparing the resonant frequencies of the
counterpropagating directions of the ring cavity, most of the noises from environ-
mental disturbances are canceled out by the common mode rejection. However, the
common mode rejection is not effective to some noises. Also, even if the common
mode rejection cancels out some effects, the common mode rejection ratio is finite.

Here, we will enumerate the noises which could limit the sensitivity of our appa-
ratus, and show the requirements for each noise calculated from Eq. (3.10). All
the requirements are set at the rotational frequency frot = ωrot/(2π) = 0.083 Hz,
because the Lorentz violation signal appears at the rotational frequency of the ring
cavity.

The parameters used for the noise calculation are summarized in Table3.1. Strictly
speaking, the incident beam powers in the counterclockwise direction and the clock-
wise direction are different, but we use the approximation that they are both P0 in
the calculation below. Powers of both incident beams are within the same order in
our setup.

3.3.1 Shot Noise

Shot noise arises from a quantumfluctuation of a number of photons on a photodetec-
tor, and is one of the quantum noise which originates from Heisenberg’s uncertainty
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Table 3.1 Parameters of our
apparatus used for the noise
calculation

Laser wavelength λ = 1550 nm

Laser frequency ν = 1.93 × 1014 Hz

Incident beam power P0 = 1 mW

Finesse F = 120

Cavity round-trip length L = 140 mm

Area enclosed by the cavity
optical path

S = 530 mm2

Silicon block length d = 20 mm

Silicon block refractive index n = 3.69

Rotational angular frequency ωrot = 30◦/s
= 0.524 rad/s

principle. Shot noise is a white noise, and its power spectral density can be written
as

δ Ishot = √
2eIPD [A/

√
Hz], (3.11)

where IPD is a photocurrent of a detector [8].
Consider rewriting this equation with quantum efficiency η. Quantum efficiency

is defined as a number of output electrons per one incident photon. Thus, it can be
written as

η ≡ IPD/e

PPD/(hν)
, (3.12)

where PPD is the incident beam power on the photodetector, and

IPD = e

hν
ηPPD (3.13)

follows. Here, e is the elementary charge, and h is the Planck’s constant. By inserting
this equation to Eq. (3.11), theminimumdetectable power change from the shot noise
can be calculated as

δPshot =
√
2hνPPD

η
. (3.14)

In our experiment, we use the Hänsch–Couillaud method (or polarization spec-
troscopy) [9, 10] to obtain the error signals. Detailed calculations in Sect. 7.3.3.1
show that in the Hänsch–Couillaud method, incident beam power on one photode-
tector at the cavity resonance is

PPD = 1

4
P0. (3.15)

Also, the ratio between the change in the error signal Pdiff , and the change in the
round-trip phase of the ring cavity φ at near resonance is

http://dx.doi.org/10.1007/978-981-10-3740-5_7
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∂Pdiff
∂φ

= 1

π
P0F , (3.16)

where F is the finesse of the cavity.
Therefore, the minimum detectable phase change from the shot noise is

δφshot = √
2δPshot

(
∂Pdiff
∂φ

)−1

= π

F

√
hν

ηP0
. (3.17)

√
2 in the first line comes from the fact that we use the difference signal from the two

photodetectors to obtain the error signal, and the shot noises from the two detectors
are added incoherently.

Since φ can be written as

φ = 2π

λ
[L + (n − 1)d], (3.18)

the minimum detectable resonant frequency change from the shot noise is

δνshot

ν
= δφshot

φ
= 1

2[L + (n − 1)d]F

√
chλ

ηP0
. (3.19)

The quantum efficiency is typically η � 1. So, if we insert the parameters for our
ring cavity, we get

δνshot

ν
� 4 × 10−16/

√
Hz < 10−10/

√
Hz. (3.20)

So, the design of our ring cavity is enough to meet the requirement. As it is clear
from Eq. (3.19), the shot noise can be further lowered by an order of magnitude by
increasing the cavity finesse by an order of magnitude or by increasing the incident
beam power by two orders of magnitude.

3.3.2 Laser Intensity Noise

In interferometric phase detections including our experiment, the phase change is
converted into the power change and detected by a photodetector. So, if the apparatus
cannot distinguish the intensity fluctuation from the phase fluctuation, the intensity
fluctuation of the incident beam will be a noise source.
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We use the Hänsch–Couillaud method, and take difference of two photodetectors
to obtain the error signal. Since the intensity noise is common to both detectors, the
effect can be eliminated by this method. However, the common mode rejection ratio
is finite and some effects are remained. From Eq. (3.15), the intensity noise in the
error signal can be written as

δPint = 1

4
γ int
CMRRP0

δP0
P0

, (3.21)

where γ int
CMRR is the common mode rejection ratio. Thus, the minimum detectable

phase change from the intensity noise is

δφint = δPint

(
∂Pdiff
∂φ

)−1

= πγ int
CMRR

4F

δP0
P0

, (3.22)

and from Eq. (3.18), the minimum detectable resonant frequency change is

δνint

ν
= δφint

φ
= γ int

CMRRλ

8[L + (n − 1)d]F
δP0
P0

. (3.23)

Empirically, the common mode rejection ratio for the intensity noise is roughly
1/100 at best. Here, we assume γ int

CMRR = 1/10, and the parameters for our ring cavity
give

δνint

ν
= 8 × 10−10 δP0

P0
. (3.24)

Hence, the requirement for the relative intensity noise of the incident beam is

δP0
P0

<
10−10/

√
Hz

8 × 10−10

� 1 × 10−1/
√
Hz (@ frot = 0.083 Hz). (3.25)

This level is easily obtained without any intensity stabilization. The measured
relative intensity noise at free run was 2 × 10−3/

√
Hz for our laser.

3.3.3 Laser Frequency Noise

We compare the resonant frequencies of counterpropagating directions by locking
the laser frequency to the counterclockwise resonance, and injecting the beam into
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the clockwise direction. Ideally, the laser frequency is perfectly locked to the coun-
terclockwise resonance, but in reality, there are some residual frequency fluctuations
between the counterclockwise resonance and the laser frequency.

Requirement for the residual laser frequency noise is the same as the one in
Eq. (3.10), and is

δνfreq

ν
< 10−10/

√
Hz (@ frot = 0.083 Hz). (3.26)

Details of the frequency stabilization are discussed in Sect. 4.2.3.
The full width at half maximum of the resonance of our cavity is (see Sect. 7.3.1.2)

νFWHM = c

[L + (n − 1)d]F � 12 MHz. (3.27)

This means that the frequency noise of the cavity transmitted beam is the same as
the one for the laser frequency noise below Fourier frequency of ∼12MHz. Since
we only care about the noise at the rotational frequency frot, we can assume that the
laser frequency stability directly affects the Lorentz violation signal.

3.3.4 Noise from Sagnac Effect

The clockwise and the counterclockwise resonant frequencies are different for rotat-
ing ring cavities because of the Sagnac effect [11]. If the rotational speed is constant,
this resonant frequency difference is constant, so it does not affect our measurement,
but if the rotational speed fluctuates, it will be a noise source.

The round-trip phase difference between the beams propagating in the clockwise
and the counterclockwise directions is [12]

φSagnac = 4π

cλ

∮
l
vl · dl, (3.28)

and is independent of the refractive index of the optical path. Here, dl is the line
element vector of the optical path, and vl is the speed of motion of that line element
from the rotation. Note that the equation above is true when Fresnel-Fizeau effect is
negligible, i.e. when ωrotR � c/n, where R is the average radius of the ring (see,
also, Eq. (56) of Ref. [13]).

Therefore, by using Eq. (3.18) also, the resonant frequency difference between
counterpropagating directions caused by the Sagnac effect is

http://dx.doi.org/10.1007/978-981-10-3740-5_4
http://dx.doi.org/10.1007/978-981-10-3740-5_7
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δνSagnac

ν
= δφSagnac

φ
= 8π Sδωrot/(cλ)

2π [L + (n − 1)d]/λ
= 4S

c[L + (n − 1)d]δωrot. (3.29)

Here, S is the area enclosed by the triangular cavity optical path.
By inserting the parameters for our ring cavity, we get

δνSagnac

ν
= 4 × 10−11 (rad/s)−1 δωrot. (3.30)

Thus, the requirement for the fluctuation of ωrot is

δωrot <
10−10/

√
Hz

4 × 10−11 (rad/s)−1

� 3 rad/s/
√
Hz (@ frot = 0.083 Hz). (3.31)

For the rotational speed servo,weused a commercialmotor control system.Details
of the turntable are discussed in Sect. 4.3.

It is worth mentioning that the Sagnac effect can be fundamentally avoided by
taking the Lorentz violation data only when the cavity is stationary. Modulation
of the cavity orientation can be done by rotating the cavity by a few degrees and
stopping it repeatedly. However, since the requirement for the fluctuation of ωrot was
not severe for our experiment, we chose to continuously take data when the ring
cavity is rotating. This is also beneficial for longer measurement time.

3.3.5 Other Noises

3.3.5.1 Seismic Noise

Even if the cavity length fluctuates because of the seismic vibration or the turntable
vibration, the resonant frequencies of both directions change coherently, and will not
be a noise source for our measurement, in principle. Also, by fixing the optics rigidly,
the whole optical system moves in the same way, and the effect of vibrations can
be further reduced. To reduce the effect from the vibrations, we fix three mirrors of
the ring cavity to a single spacer, and also fix whole the optics to a single aluminum
plate.

The level of the seismic vibration depends on places, local time, weather, etc. but
it roughly follows the following spectrum [14]:

xseis = 10−7

(
1 Hz

f

)2

m/
√
Hz (3.32)

http://dx.doi.org/10.1007/978-981-10-3740-5_4
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The actual seismic vibration measured at our laboratory also follows this model at
frequencies higher than ∼10Hz. Below 10 Hz, the measured spectrum is typically
smaller than the model. However, we use this model for overestimating the vibration
level.

So, using γCMRR as the common mode rejection ratio of the resonant frequencies
of counterpropagating directions, and γ

rigid
CMRR as the common mode rejection ratio

from fixing the mirrors rigidly on a spacer, the fluctuation in the resonant frequency
difference between counterpropagating directions can be written as

δνseis

ν
∼ γCMRRγ

rigid
CMRR

δxseis
L

∼ γCMRRγ
rigid
CMRR × 10−6/

√
Hz. (3.33)

To meet the requirement in Eq. (3.10),

γCMRRγ
rigid
CMRR � 10−4 (3.34)

is required. Empirically, γ rigid
CMRR < 10−6 can be expected. So, this requirement is not

severe, and we can say that no special vibration isolation system is needed.
We will also place all the optics on a single aluminum plate to reduce effects from

vibrations outside the ring cavity. However, since the vibration of the turntable is
expected to be much larger than the seismic vibration, we should keep our eyes on
the vibration. This turntable vibration issue will be discussed in Sect. 4.3.3.

3.3.5.2 Thermal Noise

The surfaces of the mirrors and the spacer length fluctuate thermally because the
cavity is placed in a heat bath with a finite temperature. Those thermal fluctuations
induceunwanted cavity length changes,which result in thermal noises. The amplitude
of the fluctuating force is proportional to the mechanical losses in the body itself,
according to the fluctuation-dissipation theorem [15]. The surface thermal motion
of the mirror caused by its substrate and coating are called the mirror substrate
thermal noise and the coating thermal noise, respectively. The thermal fluctuation
of the spacer length is called the spacer thermal noise. Here, we only consider the
Brownian noise.

The spectrum of the spacer thermal noise, the mirror substrate thermal noise, and
the coating thermal noise are represented by [16, 17]

δνspc

ν
= 1

L

√
4kBTcav
Qspcω

2ρl2

π2EspcM
, (3.35)

δνsub

ν
= 1

L

√
4kBTcav
Qsubω

1 − σ 2
sub√

πEsubw
, (3.36)

http://dx.doi.org/10.1007/978-981-10-3740-5_4
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Table 3.2 Parameters used
for the thermal noise
calculations. The spacer
material is Super Invar, and
the mirror substrate is fused
silica. The mirrors are coated
with delectric multi-layer
coating. Material properties
listed here are conservative
and empirical values taken
from Refs. [18, 19]

Temperature Tcav = 300 K

Spacer density ρ = 8 × 103 kg/m3

Spacer length l ∼ L/2

Spacer weight M = 0.34 kg

Spacer Q-factor Qspc = 104

Spacer Young’s modulus Espc = 140 GPa

Substrate Q-factor Qsub = 106

Substrate Young’s modulus Esub = 70 GPa

Substrate Poisson’s ratio σsub = 0.17

Coating Q-factor Qco = 103

Coating Poisson’s ratio σco = 0.17

Coating thickness dco = 8 µm

Beam radius w = 210 µm

δνco

ν
= 1

L

√
4kBTcav
Qcoω

2dco(1 + σco)(1 − 2σco)

πEsubw2
, (3.37)

respectively. The parameters used in these equations are summarized in Table3.2.
These equations are valid in the frequency range below their respective resonant
frequencies. The expression for the spacer thermal noise is obtained by assuming
the spacer to be a cylinder. As we can see, lowering the temperature Tcav and using
higher Q-value materials give smaller thermal noise. Q-values are related with the
mechanical loss for each material, and lower loss gives higher Q-values.

The definitions of each parameter and the values used for thermal noise calculation
are listed in Table3.2. The resulting thermal noise levels are

δνspc

ν
= 2 × 10−16/

√
Hz, (3.38)

δνsub

ν
= 2 × 10−16/

√
Hz, (3.39)

δνco

ν
= 4 × 10−16/

√
Hz (@ frot = 0.083 Hz). (3.40)

Values in Table3.2 come from the properties of the spacer material, Super Invar,
and the mirror substrate material, fused silica, in Ref. [19]. Q-values and dco are
empirically assumed conservative values [18]. Also, the mirror substrate thermal
noise and the coating thermal noise have to be multiplied by

√
3 to incorporate the

effect from 3 mirrors. Even so, the thermal noise levels are more than 5 orders of
magnitude below our requirement.

Thus, we need no cryogenic operation from the thermal noise point of view. The
thermal noise level might be even smaller if we consider that the thermal noise is
common to both clockwise and counterclockwise resonances.
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3.3.5.3 Temperature Fluctuation

The fluctuation in the cavity temperature changes the cavity optical length because
of the thermal expansion of the spacer and the silicon piece, and the change in
the refractive index of silicon. Since this effect is common to both clockwise and
counterclockwise resonances, this effect does not create noise in principle.

The fluctuation in the resonant frequency difference between counterpropagating
directions from the cavity temperature fluctuation δTcav can be written as

δνtemp

ν
= γCMRR

αspcL + αSi(n − 1)d + dn
dT d

L + (n − 1)d
δTcav, (3.41)

where αspc and αSi are the thermal expansion coefficients of the spacer and silicon,
respectively. dn

dT is the thermo-optic coefficient of silicon, and γCMRR is the common
mode rejection ratio of the resonant frequencies of counterpropagating directions.

As a material of the spacer, we use Super Invar which has low thermal expansion
coefficient (αL ∼ 10−7/K [19]). The thermal expansion coefficient of silicon is 3 ×
10−6/K at room temperature [19]. The thermo-optic coefficient of silicon at 1550 nm
and at room temperature is 2 × 10−4/K [20]. Thus, if we assume γCMRR = 1/100,
requirement for the temperature stability is

δTcav � 10−10/
√
Hz

1/100 · (10−7 + 8 × 10−6 + 2 × 10−5)/K

= 4 × 10−4 K/
√
Hz (@ frot = 0.083 Hz). (3.42)

This value is typically realized in usual laboratories, and we can say that no special
temperature stabilization is needed for our experiment. The measured temperature
fluctuation was less than 10−4 K/

√
Hz at 0.1 Hz.

However, in order to go further in the sensitivity, temperature stabilization might
be needed. Since the requirement on the temperature fluctuation mainly comes from
the thermo-optic effect in silicon,making thermo-optic coefficient smaller also helps.
This can be realized by operating the cavity at cryogenic temperature. For example,
the thermo-optic coefficient at 20 K is 2 orders of magnitude smaller than that at the
room temperature [20].

3.3.5.4 Cavity Tilt Fluctuation

If the rotational axis of the turntable and the direction of gravity is not parallel, the
tilt of the cavity changes in the rotational period, and the cavity changes its length
because of the gravitational deformation. This tilt fluctuation has been a long standing
issue for limiting the sensitivity of Michelson–Morley type experiments. However,
this effect is also common to both clockwise and counterclockwise resonances, and
this effect won’t be a noise source for our experiment in principle.
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If we approximate that the shape of the spacer is a cuboid with length of l, and
its length is expanded by a gravitational acceleration of g sin δϕ when the cavity tilt
from horizontal plane is δϕ, the length change can be written as [21]

δl

l
= ρl2

2Espc
g sin δϕ (3.43)

� ρl2g

2Espc
δϕ. (3.44)

Here, ρ and Esub is the density and the Young’s modulus of the spacer.
Therefore, the fluctuation in the resonant frequency difference between counter-

propagating directions from the tilt fluctuation is

δνtilt

ν
∼ γCMRR

δl

l
= γCMRR

ρl2g

2Espc
δϕ. (3.45)

Assuming γCMRR = 1/100, l ∼ L/2, and g = 9.8 m/s2, and inserting the physical
properties of Super Invar in Table3.2, we get

δνtilt

ν
∼ 1 × 10−11/rad δϕ. (3.46)

Thus, the requirement for the tilt fluctuation is

δϕ � 10−10/
√
Hz

1 × 10−11/rad

= 1 × 101 rad/
√
Hz (@ frot = 0.083 Hz). (3.47)

This requirement is 7 orders of magnitude larger than the requirement for other
Michelson–Morley type experiments [22], and we can say that no special tilt control
is needed for our experiment. However, tilt also couples into the signal in multiple
ways. For example, tilt of the turntable could introduce rotational speed fluctuation
in a rotational period. The actual measurement on the tilt coupling will be discussed
in Sect. 5.4.

3.3.5.5 Noise from Centrifugal Force

If the rotational speed fluctuates, the centrifugal force acting on a cavity fluctuates
and the resonant frequency fluctuates by the cavity deformation. In principle, this
effect is also eliminated by the common mode rejection in our experiment.

The length change of the spacer from centrifugal force can be written in the
similar way as Eq. (3.43), by replacing g sin δϕ with fluctuation in the centrifugal
acceleration δ(rω2

rot),

http://dx.doi.org/10.1007/978-981-10-3740-5_5
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δl

l
= ρl2

2Esub
δ(rω2

rot)

= ρl2rωrot

Esub
δωrot. (3.48)

Therefore, the fluctuation in the resonant frequency difference between counter-
propagating directions from the centrifugal force fluctuation is

δνcent

ν
∼ γCMRR

δl

l
= γCMRR

ρl2rωrot

2Esub
δωrot. (3.49)

By assuming γCMRR = 1/100 and r ∼ L/2, and inserting the cavity parameters, we
get

δνcent

ν
∼ 8 × 10−14 (rad/s)−1 δωrot. (3.50)

Thus, requirement for the rotational speed fluctuation is

δωrot � 10−10/
√
Hz

8 × 10−14 (rad/s)−1

= 1 × 103 rad/s/
√
Hz (@ frot = 0.083 Hz). (3.51)

This requirement is 3 orders of magnitude larger than Eq. (3.31), and the effect from
the centrifugal force is sufficiently small.

3.3.5.6 Electrical Noises

Since we use photodetectors, electrical circuits, and electrical devices for acquiring
data and feedback control, injection of electrical noises to the Lorentz violation signal
is unavoidable. ADC (analog-to-digital converter) noise and aliasing noise could also
contribute to the sensitivity of the apparatus. So,we have to carefully design electrical
components by estimating the coupling. The noise coupling of each component can
be estimated using the method described in Sect. 7.2.2.

3.3.5.7 Noises from Sound, Wind, Etc.

Generally, when interferometers are built in air, the vibration from sound and wind
will be noise sources. Some amount of these effects will be canceled out by the
common mode rejection, but it is better to reduce these effects from the stability
point of view for the laser frequency servo.

http://dx.doi.org/10.1007/978-981-10-3740-5_7
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In our experiment, the optical system including the cavity is placed in a vacuum
enclosure at roughly 1 kPa(=10−2 atm). This gives not only the soundproofing, but
also the temperature stability of the system.

3.4 Summary of This Chapter

• We use an optical ring cavity with a silicon piece inside to change the refractive
index of the path asymmetrically to search for the parity-odd Lorentz violation.

• The Lorentz violation signal is the resonant frequency difference between the
counterclockwise and clockwise directions. We obtain this signal with a double-
pass configuration.

• The Lorentz violation signal obtained with a double-pass configuration will be
zero when there is no violation. Thus, our experiment is a null experiment.

• Since we do the differential measurement of the resonant frequencies, the noise
from the cavity length fluctuations will be canceled out by a high common mode
rejection. Therefore, no special high vacuum environment, high performance
vibration isolation system, nor cryogenic operation is needed.

Table 3.3 Summary of requirements and estimations of various noise sources. Requirements and
estimations are the values at the cavity rotational frequency 0.083 Hz

Noise Req. or est. Design

Shot noise 4 × 10−16/
√
Hz 6 orders of magnitude below

requirement

Laser intensity
δ P0
P0

< 1 × 10−1/
√
Hz Free-run is 2 orders of

magnitude below requirement

Laser frequency
δνfreq

ν
< 10−10/

√
Hz Need to lock laser frequency

on cavity resonance

Sagnac effect δωrot < 3 rad/s/
√
Hz Stabilize rotational speed with

motor control system

Seismic noise γCMRRγ
rigid
CMRR � 10−4 Make a rigid cavity, place

optics on a single plate

Thermal noise 1 × 10−15/
√
Hz Operation at room temperature

Temperature fluctuation δTcav < 4 × 10−4 K/
√
Hz Laboratory environment meets

requirement

Tilt fluctuation δϕ < 1 × 101 rad/
√
Hz No tilt stabilization needed

Centrifugal force δωrot < 103 rad/s/
√
Hz Stabilize rotational speed with

motor control system

Sound, wind, etc. – Place optics in a vacuum
enclosure
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• By rotating the ring cavity, we upconvert the Lorentz violation signal to higher
frequency (0.083Hz) to lower the noise effectively.

• We have estimated the noises from various sources to design the apparatus and
set the requirement for the stabilization. The requirements and estimations are
summarized in Table3.3.
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Chapter 4
Experimental Setup

Abstract Our experimental apparatus consists of the optical system including the
ring cavity, turntable, and data acquisition system. In this chapter, we will overview
the whole apparatus and describe details of each component. We will also describe
the details of the observational data taken for a year.

Keywords Optics · Turntable · Frequency noise · Data acquisition

4.1 Overview

Schematic of the whole experimental setup is shown in Fig. 4.1. We use a single-
frequency DFB fiber laser (Koheras AdjustiK C15) with a wavelength of 1550 nm
as a laser source. The laser beam is fed into the vacuum enclosure via a polarization
maintaining fiber. The beam passes through an isolator to avoid the beam returning
into the source, and split into three using two beam splitters, or fiber couplers. Two
of three beams are used for monitoring the laser intensity, and the last one is get out
of the fiber by a collimator (Thorlabs PAF-X-5-C) and fed into the ring cavity.

The beams for monitoring the laser intensity and the reflected beams from the
ring cavity are transduced to the electrical signals by photodetectors (Hamamatsu
Photonics G8194) and used as the intensitymonitor signals, the frequency servo error
signal, and the Lorentz violation signal. The laser source and the vacuum enclosure
are fixed on a turntable. The rotation of the turntable is controlled with a personal
computer. The Lorentz violation signal and other monitor signals are recorded with
a data logger (Yokogawa DL750), and used for data analysis.

The actual photographs of the experimental setup are shown in Sect. 7.5.

© Springer Nature Singapore Pte Ltd. 2017
Y. Michimura, Tests of Lorentz Invariance with an Optical Ring Cavity,
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Fig. 4.1 Schematic of the whole experimental setup. BS beam splitter,HWP half-wave plate,QWP
quarter-wave plate, PBS polarizing beam splitter. The rotational axis of the turntable is vertical to
the optical plane

4.2 Optical Ring Cavity

Here, we will discuss the ring cavity design, the optical configuration for obtaining
the Lorentz violation signal, and the laser frequency servo. We will also discuss the
calibration of the Lorentz violation signal, and show sensitivity level achieved.

4.2.1 Design of the Optical Ring Cavity

Our ring cavity shown in Fig. 4.2 is a triangular cavity constructed from three half-
inch mirrors. These mirrors are mechanically fixed on a spacer made of Super Invar.
Super Invar is an alloy which has a low thermal expansion constant (αL ∼ 10−7 /K).
As we have discussed in Sect. 3.3.5, common mode rejection of effects from vibra-
tions or temperature fluctuation etc. is enhanced, and the frequency lock is expected
to be more stable by fixing the mirrors to a spacer.

The spacer has through holes for the optical path. The radii of the holes are 4 mm
and the beam radius inside the cavity is 260µm atmaximum (see Fig. 4.4). The spacer
also has a hole for placing a silicon piece along one side of the triangle. This silicon
piece is rectangular, and its size is 5 mm × 10 mm × 20 mm. The edge surfaces of
this silicon piece are polished up to the surface figure of λ/10, and antireflection

http://dx.doi.org/10.1007/978-981-10-3740-5_3
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Fig. 4.2 Shape and dimensions of the ring cavity

coated for both polarizations (r2 < 0.5%/surface). Also, the incident beam to this
piece is slightly angled (θin = 9.5◦) in order to avoid the cross-coupling between the
counterpropagating beams. The incident angle to the silicon piece is chosen so that
the silicon piece is placed parallel to the spacer. The incident angle to the mirror M2
is also 9.5◦, and the incident angles to M1 and M3 is 40.25◦.

Silicon has high transmittance and a large refractive index (measured value n =
3.69) at wavelength λ = 1550 nm. The round-trip length of our cavity is 14 cm
and the designed finesse is about 120 for p-polarized light, with the silicon piece
inside the cavity. This finesse is large enough considering the shot noise calculation
in Sect. 3.3.1.

The optical parameters of the ring cavity are summarized in Table4.1. Termi-
nology and treatment of optical cavities are summarized in Sect. 7.3.1. Also, for
example, Refs. [1, 2] give basics of optical cavities.

4.2.2 Optical Configuration

The optical setup for obtaining the Lorentz violation signal using the ring cavity is
shown in Fig. 4.3.

The laser beam is fed into the ring cavity in the counterclockwise direction via
a polarization maintaining fiber. A fiber collimator (Thorlabs PAF-X-5-C) was used
to align and mode-match the incident beam to the ring cavity. A polarizing beam
splitter (PBS) was placed right after the collimator output in order to suppress the
effect from the polarization drift. The incident beam power to the ring cavity is about
1 mW. No external intensity stabilization was employed.

http://dx.doi.org/10.1007/978-981-10-3740-5_3
http://dx.doi.org/10.1007/978-981-10-3740-5_7
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Table 4.1 Parameters of the ring cavity. All values are designed values except for n. ri values shown
are for p-polarized light, and they are lower than those for s-polarized light. F value shown is the
designed value assuming 1% loss at the silicon block. n value shown is for the light at λ = 1550 nm,
and it is the measured by Okamoto Optics

M1 and M3 amplitude reflectivity r21 = r23 = 98%

M2 amplitude reflectivity r22 > 99%

M1 and M3 radius of curvature R1 = R3 = ∞ (flat)

M2 radius of curvature R2 = 200 mm

Finesse F = 120

Round-trip length L = 140 mm

Silicon length d = 20 mm

Silicon refractive index (measured) n = 3.69

Free spectral range νFSR = 1.5 GHz

Full width at half maximum νFWHM = 12 MHz

Fig. 4.3 The optical setup for obtaining the Lorentz violation signal. HWP half-wave plate, QWP
quarter-wave plate, PBS polarizing beam splitter

From the cavity reflection of the counterclockwise beam, we get the error signal
which is proportional to the difference between the incident laser beam frequency and
the counterclockwise resonant frequency.We used the Hänsch–Couillaudmethod [3,
4], or polarization spectroscopy, to obtain the error signal. The Hänsch–Couillaud
method utilizes the polarization selectability of triangular ring cavities. Since there is
an odd number of mirror reflections in triangular ring cavities, the resonant frequen-
cies for p-polarization and s-polarization are different. The polarization component
which is anti-resonant in the incident beam is created by a half-wave plate (HWP).
In our case, the p-polarization beam resonates in the cavity, and s-polarization is
anti-resonant. In the cavity reflection, there are a p-polarization beam which went
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through the cavity, and an s-polarization beam which is directly reflected by an input
mirror. So, by taking the interference between those two beams with a quarter-wave
plate (QWP) and PBS, we can obtain the error signal about the cavity length with
respect to the incident beam frequency. Also, by taking the difference of two PD
outputs (PDs1 and PDp1) to obtain an error signal, we reduce the effect of laser
intensity fluctuation.

The frequency of the laser beam is stabilized to the counterclockwise resonance
using this error signal. The frequency actuator of the laser source used was a piezo-
electric actuator attached on the fiber-made laser cavity. A high voltage amplifier
(Thorlabs MDT694A) was used to increase the frequency actuation range. The fre-
quency actuation range was 1.3 GHz, which is roughly 1 FSR of the ring cavity.
During the observation run, we also manually tuned the laser frequency once in a
while to compensate the frequency drift.

The transmitted light of the counterclockwise beam from the mirror M3 is then
reflected back into the cavity in the clockwise direction by a reflection mirror (MR).
We obtain the second error signal from the reflection of this clockwise beam. This
second error signal is proportional to the resonant frequency difference between
both directions, and in this signal we search for the Lorentz violation. To obtain this
error signal, we again used the Hänsch–Couillaud method. Our experiment is a null
experiment since this error signal will be zero when there is no Lorentz violation.

The principle of the Hänsch–Couillaud method and its advantage in our exper-
iment are summarized in Sect. 7.3. The photodetectors used for the error signals
(PDs1, PDp1, PDs2, and PDp2) are all G10899-02K from Hamamatsu Photonics.

The distances between the fiber collimator and the ring cavity, and the ring cavity
and the mirror MR is set so that the mode-matching of the beam is maximized.
The distances between optical components and the beam radius change along the
beam propagation are shown in Fig. 4.4. The radius of curvature of the mirror MR is
200 mm, which is the same as the designed wave front curvature at MR. Generally,
the spatial mode of the incident beam and the proper mode of the cavity should be
matched to get enough intra-cavity power. See, for example, Refs. [1, 2] for more
details.

All the optics are placed in a 30 cm × 30 cm × 17 cm vacuum enclosure to
realize a stable operation. The vacuum level was∼1 kPa at lowest, but since we used
sealed-off enclosure and did not evacuated the enclosure continuously, the vacuum
level decayed at the time scale of about a few weeks. We did not monitor the vacuum
level continuously, and only re-evacuated the enclosure twice during the one-year
observation run. This vacuum enclosure is fixed on a turntable together with the
laser source, and rotated. The details of the turntable system are discussed in the next
section (Sect. 4.3).

http://dx.doi.org/10.1007/978-981-10-3740-5_7
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Fig. 4.4 Distances between optical components and the beam radius changes. Red dots show the
positions of the surfaces of the optics, and the beam radii at those optics. Red dots for mirrors such
as M1, M2, M3, and MR, are for HR surfaces of those optics

4.2.3 Frequency Servo and Calibration of the Signal

The openloop transfer function of the laser frequency servo is shown in Fig. 4.5. The
unity gain frequency (UGF) is 1 kHz, and the phase margin is 80◦, which indicate
that the servo is stable. The servo bandwidth was limited by the resonance of the
piezoelectric actuator at around 23 kHz. This resonance can be considered as a cause
of the phase delay at high frequency.

In the Hänsch–Couillaud method, we can obtain the error signal which is propor-
tional to the difference between incident laser beam frequency and the cavity resonant
frequency. Using the constant of proportionality for this error signal H [V/Hz], the
transfer function of the servo filter F [V/V], and the frequency actuation efficiency
of the piezoelectric actuator A [Hz/V], the openloop transfer function can be written
as (see Sect. 7.2)

G = HFA. (4.1)

Since F is the transfer function of the servo filter circuit we made, it is known and
independently measurable. Also, A can be measured using an asymmetric Michelson
interferometer (see Sect. 7.4). Thus, by measuring the openloop transfer function G,
H can be measured. We used this H to calibrate the error signal in volts to Hz.

This calibration method can also be used to calibrate the Lorentz violation signal.
This can be done by measuring the openloop transfer function of the laser frequency

http://dx.doi.org/10.1007/978-981-10-3740-5_7
http://dx.doi.org/10.1007/978-981-10-3740-5_7
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Fig. 4.5 Openloop transfer function of the laser frequency servo

lock using the error signal from the difference output of PDs2 and PDp2, not PDs1
and PDp1 (see Fig. 4.3).

4.2.4 Sensitivity of the Stationary Ring Cavity

Figure4.6 shows the result of the laser frequency servo. The green curve shows the
spectrum of the laser frequency noise without any frequency servo, and this spectrum
is estimated from the feedback signal of the servo (see Sect. 7.2.2 for details of the
calculation). The blue curve is the spectrum of the error signal used for the laser
frequency servo, and the red curve is the spectrum of the Lorentz violation signal.
Thus, the red curve shows the sensitivity of our apparatus for Lorentz violation, and
we can see that the noise level is well below the required value, 1 × 10−10 /

√
Hz at

0.083 Hz.
If the error signal perfectly reflects the fluctuation of the laser frequency with

respect to the ring cavity, the spectrum of the error signal and the Lorentz violation
signal should be equal. It is true for the frequency band higher than ∼70 Hz, and
we can say that the residual laser frequency noise is the major noise source for the
Lorentz violation signal at the high frequency region. However, at the low frequency
region, the noise level for the Lorentz violation signal is higher than the error signal.
There are two ways to explain the reason for this:

http://dx.doi.org/10.1007/978-981-10-3740-5_7
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Fig. 4.6 Fractional frequency noise spectrum before and after the laser frequency servo, and the
noise spectrum of the Lorentz violation signal. The green curve shows the spectrum of the free-
running laser frequency noise estimated from the feedback signal, the blue curve shows the spectrum
of the in-loop error signal, and the red curve shows the spectrum of the Lorentz violation signal.
Note that these spectra are taken when the cavity is stationary

• Since the error signal is in-loop, the actual residual laser frequency noise could be
larger

• Other noises could be introduced when obtaining the Lorentz violation signal

The major noise source to the Lorentz violation signal at the turntable rotation
frequency 0.083 Hz is not identified yet at this point. The contributions from the
noise from the electrical circuits and the shot noise are sufficiently small and are
not limiting the noise level of the Lorentz violation signal. However, note that these
spectra are taken when the cavity is not rotated, and the actual sensitivity for the
Lorentz violation is determined by the spectra during the cavity rotation. Identifying
the noise source for the stationary cavity is not important for improving the sensitivity,
since the noise level for the rotating cavity is much worse (see Sect. 4.3.3).

4.3 Turntable

In our experiment, we illuminate the ring cavity with a laser beam fed from the
source via optical fiber. The laser source and the ring cavity are rotated to modulate
the Lorentz violation signal. Power to the laser source is supplied and the signals
from the cavity are extracted with electrical cables, and we rotated the turntable
in positive and reverse directions alternately to avoid the twist of the cables. Also,
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the rotational speed of the turntable should be well controlled to avoid noise from
the Sagnac effect (see Sect. 3.3.4). Such a control of the turntable was done by a
commercial motor and its servo system.

In this section, we show the details of the turntable setup and show measured
rotational speed fluctuation. We also show the sensitivity to the Lorentz violation
signal when the cavity is rotating.

Note that the electric power supply and the data acquisition can also be done even
if the cavity is continuously rotated in one direction. Other anisotropy experiments
such as Refs. [5, 6] continuously rotated the cavity together with the laser source and
data taking instruments. In these cases, they used slip rings to avoid the twist of cables.
However, slip rings create electrical noise at the turntable rotational frequency, and
we need a larger scale rotational system to avoid this noise. Michelson–Morley type
experiments are less sensitive to the noise from slip rings since the Lorentz violation
signal appears at twice the turntable rotational frequency.

4.3.1 Setup of the Turntable

A schematic of the turntable system is shown in Fig. 4.7. All the optics including
the ring cavity is placed inside the vacuum enclosure for sound-proofing etc., and
this enclosure is fixed on the turntable. The laser source is also put on top of the
enclosure and rotated together with the ring cavity. The vacuum enclosure has the
base size of 30 cm × 30 cm, the height of 17 cm, and the mass of the rotating body
is approximately 20 kg.

The turntable is rotated with a direct drive servo motor (Nikki Denso NMR-
CAUIA2A-151A), and its rotation is controlled by a motor driver (Nikki Denso

Fig. 4.7 Schematic of the turntable and data acquisition system. PI photointerrupter

http://dx.doi.org/10.1007/978-981-10-3740-5_3
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Fig. 4.8 Spectra of the rotational speed fluctuation. The blue curve is for positive rotation, the
green curve is for reverse rotation, and the red curve is for stationary turntable

NCR-CDA1A1A-201D). Positive and reverse rotations of 420◦ are repeated alter-
nately in order to avoid the twist of the electrical cables hang down from the top of the
rotating body. We used thin cables (0.1 mm dia.) for reducing vibrations introduced
through the cables. The rotational speed is ωrot = 30◦/s (frot = 0.083 Hz), and S-
curve acceleration and deceleration were used when flipping the sign of the rotations
in order to avoid sudden rotational speed change. We rotated more than 360◦ in order
to keep the rotational speed constant for 360◦ part in the middle of each rotation.

Themotor driver gives torque commands to themotor for controlling the rotational
speed by computing the rotation angle and the rotational speed from the output signal
from the built-in encoder. The encoder gives 6.4 × 105 pulses (4multiplication value)
per one rotation. The rotation angle and the rotational speed settings are done by
writing a code with a personal computer connected to the motor driver.

4.3.2 Rotational Speed Fluctuation

Figure4.8 shows the spectra of the rotational speed fluctuation of the turntable con-
trolled by the motor driver. The blue and green curves show the fluctuation when
the turntable is continuously rotated at the speed of ωrot = 30◦/s (frot = 0.083 Hz),
which is used for the Lorentz violation search, in positive and reverse directions,
respectively. Here, we define positive rotation as the rotation which the ring cavity
rotates in counterclockwise directions when viewed from the zenith. The rotational
speed fluctuations in the both directions are well below the required value.



4.3 Turntable 55

Although there are peaks at the rotational frequency 0.083 Hz and its harmonics
in the measured spectrum, we consider that they originated from the encoder itself
and not the actual rotational speed fluctuations. The motor has a disc which has slits
equiangularly, and by counting the number of slits which pass the sensor per unit
time, it measures the rotational speed. This is how the encoder works, but since the
distances of the slits are not perfectly even, the noise peaks at the rotational frequency
and its harmonics are unavoidable.

We confirmed that the actual rotational speed fluctuation at the rotational fre-
quency is smaller by rotating the turntable without any load. If there are actual
rotational speed fluctuations at the rotational frequency, the probable reason for this
is because the gravitational force vector acting on the rotating body and the rotation
axis is not aligned. So, if we rotate the turntable without any load, the measured rota-
tional speed spectrum should give smaller peaks at the rotational frequency.However,
it gave the peaks with the same height.

The red curve in Fig. 4.8 is the spectrum of the rotational speed signal when the
turntable was not rotating. This gives the noise level of the frequency to voltage (F/V)
converter, which converts the raw encoder output to the rotational speed signal. This
F/V converter noise gets larger at the frequency band from 0.1 to 10 Hz, and this
limits the measurement at the rotational frequency. So, the actual rotational speed
fluctuation could be smaller.

We have also done the rotational speed fluctuation measurement by placing a
fiber optic gyroscope (Japan Aviation Electronics JG-201FA) on the turntable. The
measured fluctuation was approximately 4 × 10−5 rad/s at the rotational period,
but this measurement was done when the turntable was rotated at ωrot = 15◦/s to
avoid saturation of the gyroscope output. So, the actual rotational speed fluctuation
at ωrot = 30◦/s could be larger.

From the above, we have concluded that the rotational speed fluctuation of the
turntable used for our experiment is

δωrot � 1 × 10−3 rad/s/
√
Hz. (4.2)

This is smaller than the required value by more than three orders of magnitude.

4.3.3 Sensitivity During Rotations

The typical spectrum of the Lorentz violation signal during the cavity rotation is
shown in Fig. 4.9. Comparedwith the spectrum takenwhen the turntable is stationary,
the noise level is higher by two orders of magnitude, but typically below the required
value. The reason for the higher noise is unidentified at this point, but we think that
this is because of the turntable vibration from the rotation. Although the cavity length
fluctuations caused by vibrations are canceled out in the double-pass configuration,
vibrations of the optics and photodetectors outside the ring cavity are not canceled
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Fig. 4.9 Fractional frequency noise spectra of the Lorentz violation signal during the cavity rotation
and without cavity rotation. The blue curve is the spectrum when the cavity is not rotated, and the
red curve is the spectrum when the cavity is rotated

out, and they create beam jitter into the photodetectors or jitter of the incident beam
into the cavity.

To calculate the spectrum during the rotations, we only used an interval of 360◦ in
themiddle of each rotationwhere the rotational speed is constant, since the ring cavity
is rotated alternately in two directions. For each rotation, we did Fourier transform
of the Lorentz violation signal data and took average over 78 rotations to plot the
spectrum in Fig. 4.9. The spectrum plotted is a typical spectrum and the noise level
fluctuated over one year of the observation run (see Sect. 4.5).

Also, even if the spectrum during the rotations meets the requirement, it is impor-
tant tomitigate the noisewhich is coherent to the rotational angle. If there is a coherent
noise, it will fake the Lorentz violation signal. For example, we used transparent a
vacuum enclosure made of acryl resin, and the rotation of the turntable created lumi-
nosity change from the room light into the photodetectors. So, we put a shield to the
enclosure. Also, we originally did not rotate the laser source and we hang down the
optical fiber to put the laser beam into the vacuum enclosure. However, this setup
twists the optical fiber and created the coherent noise in the rotational period mainly
because of the polarization change. The electrical cables also created the coherent
noise, sowe changed the cables to thinner cables to reduce vibrations from the cables.

The static tilt of the table also created the coherent noise. The couplingmechanism
was not clear, but we think it is because the tilt of the turntable gives the tilt of the
rotational axis with respect to the gravity direction. The tilt of the rotational axis
creates the tilt fluctuation of the optics in the rotational period. It could also create
the rotational speed fluctuation in the rotational period. We used an accelerometer
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(KISTLER 8302A2) to measure the static tilt and aligned the rotational axis and the
gravity direction within approximately 0.01 mrad.

It is important to note that the frequency resolution of the sensitivity spectrum
during rotations in Fig. 4.9 is the same as the rotational frequency since the length of
the data we used for each Fourier transform is the same as the rotational period. This
also worked against our noise hunting. Continuous rotation could be done by using
a slip ring to extract the signals from and provide power to the apparatus. However,
we did not use a slip ring since slip rings create the noise which is coherent to the
rotation.

4.4 Data Acquisition System

Sincewe repeat positive and reverse rotations alternately during the Lorentz violation
search, taking the Lorentz violation data only is not sufficient for data analysis. Here,
we explain two other main signals we took, and the data taking flow. We will also
mention the remote controlling system we used for the year long observation run.

4.4.1 Data Taking

To perform a Lorentz violation search, we repeated positive and reverse rotations
alternately. When flipping the sign of the rotation, the rotational speed changes and
the turntable shakes. So, in order to take clean 360◦ data for each rotation, we rotated
420◦ or −420◦ for each rotation. For data analysis, we only used an interval of 360◦
in the middle of each rotation where the rotational speed is constant.

In order to split the Lorentz violation signal data into every rotation, we need
a signal which tells us that the turntable rotated 360◦. As shown in Fig. 4.7, we
put a small plate which sticks out of the back surface of the turntable, and made it
pass through a transmission type photointerrupter (OMRON EE-SX330) when the
turntable rotated 360◦. The place of the photointerrupter acts as the origin of the
rotation angle, and we called this signal as home signal. Note that there exists a
similar mechanism in the motor and the rotation control by the driver is done by this
built-in home signal. Our home signal with the photointerrupter is an independent
signal used only for the data analysis.

We also need the signal which tells us the signs of the rotations. We recorded
this rotational speed signal from the motor driver, as well as the home signal and
the Lorentz violation signal with a sampling frequency of 500 Hz, by a data log-
ger (Yokogawa DL750). These three continuous signal data were used for the data
analysis.

The sampling frequencyof 500Hzwas chosen in order to reduce theADC(analog-
to-digital converter) noise, and to avoid the contamination of the aliasing of the 50 Hz
line noise. The power spectrum of the ADC noise in voltage can be written as [7]
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Fig. 4.10 Example plot of the raw data of the Lorentz violation signal, the rotational speed signal,
and the home signal. The vertical axis is in 10−11 for the Lorentz violation signal, in the unit of 10◦
for the rotational speed signal, and in arbitrary unit for the home signal

PADC(f ) = 2σADC
rms

2
Ts

(
sin (π fTs)

π fTs

)2

, (4.3)

where σADC
rms is the root mean square of the quantization error, and Ts is the sampling

time. So, higher sampling frequency gives lower ADC noise. For the Lorentz vio-
lation signal channel, we also introduced 3rd-order Butterworth lowpass filter for
antialiasing.

Since the sampling frequency of 500 Hz is too high from the point of view of
the number of data points, we decimated the raw data into the sampling frequency
of 100 Hz. For decimation, we used a MATLAB function, decimate, which uses
8th-order Chebyshev type I IIR lowpass filter.

Figure4.10 is the actual raw data of the three signals acquired during the obser-
vation run. 12-s data taken from one pulse of the home signal to the next pulse are
the data for one rotation. The rotational speed signal was used only for checking the
signs of the rotations. One cycle of the positive and reverse rotation was about 30 s
including the acceleration and deceleration time.

4.4.2 Remote Controlling System

For a long-termoperation,we introduced devices and software for remote controlling.
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Data taking and the data logger controlwere done remotely by a PCbased software
called Wirepuller. Because the data logger we used had small internal storage, we
had to stop and extract data every 20h. The size of the 20h data was about 720 MB,
and downloading took about 15 min.

The Lorentz violation data were taken only during the laser frequency was locked
to the counterclockwise resonance of the ring cavity. However, the lock was some-
times lost mainly because of the temperature drift. When the feedback signal gets too
large and exceed the frequency actuation range, the lock losses. In order to re-lock
the frequency again, we had to first turn off the feedback and turn it on with gain
boost filters at low frequency again. This was done remotely by using a network
based switching device (AVIOSYS IP Power 9258) and relay circuits.

The turntable was monitored by a network camera (TENVIS JPT3185W), and
the motor was controlled by a PC based software VCII from Nikki Denso.

4.5 Observational Data

The data we used for the analysis were taken at the University of Tokyo for 393
days between July 25, 2012 to October 2, 2013. During the data acquisition, the ring
cavity was rotated approximately 1.7 × 106 times.

The number of cavity rotations for each day and the accumulated total are plotted
in Fig. 4.11 (upper panel). The intermittent data acquisition was started on July 25,
2012, but the continuous long-term operation was started on October 21, 2012. The
number of rotations per day when the laser frequency stayed locked to the cavity
resonance for a daywas 5.7 × 103. Days with smaller number of rotations were when
the frequency lock was lost, the data acquisition error occurred, or other technical
issues happened.

Achieved duty cycle for the whole period was 53% and for the period starting
from October 21, 2012 was 64%. As we have seen in Sect. 4.4.1, maximum duty
cycle we can archive with our setup is 80%, since there is 3 s of time loss per rotation
for reversing the direction of the cavity rotation. This means that approximately 20%
of the time was lost because of the lock-loss or the data acquisition error.

The main cause of lock-losses was the temperature drift, which causes a cavity
length drift and a frequency drift. The laser frequency servo keeps the laser fre-
quency to be locked to the cavity resonant frequency by changing the laser cavity
length with a piezoelectric actuator. However, if the difference between the origi-
nal laser frequency and the cavity resonant frequency drifts, the feedback signal to
the piezoelectric actuator drifts, and the lock will be lost when the feedback signal
exceeds the actuation range.

This issue can be solved by feeding back the signal also to the laser tempera-
ture or the cavity temperature. The temperature control loop generally has slower
response compared with a piezoelectric actuator loop, but has a larger tunable range.
During the operation, we occasionally adjusted the laser temperature manually to
relieve the piezoelectric actuator loop, since we did not have a temperature loop. The
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air-conditioning system in the laboratory also helped to control the temperature of
the cavity.

For the data analysis, the Lorentz violation signal is split into intervals of the
rotational period, anddemodulated at the rotational frequency and the third harmonics
of the rotational frequency. Modulation amplitude uncertainty per rotation for each
day is also plotted in Fig. 4.11 (below). Here, the amplitude uncertainty was defined
as

Σmr =
√
Nrot

(
(σ [CC

mr0])2 + (σ [SCmr0])2
)
, (4.4)

where Nrot is the number of rotation in the day, and σ [CC
mr0] and σ [SCmr0] are the

standard uncertainties of CC
mr0 and SCmr0 for the day, respectively. C

C
mr0 and SCmr0 are

the modulation amplitudes defined in Eqs. (5.23) and (5.24), and
√

(CC
mr0)

2 + (SCmr0)
2

gives the modulation amplitude at mr-th harmonics of the rotational frequency.
Σ1 was typically 2.7 × 10−12 and Σ3 was typically 1.5 × 10−12. The noise dif-

ference is supposed to be from the difference in the vibration level. The vibration of
the turntable is likely to be high at the rotational frequency.

The amplitude uncertainty differs randomly by days, but there are certain periods
of days when the amplitude uncertainty is relatively small. We are not sure about
the reason, but it might be related to the vacuum level of the enclosure. During the
observation run, we have evacuated the enclosure on October 21, 2012, November
1, 2012, andMay 24, 2013. As you can see from Fig. 4.11, the amplitude uncertainty
somewhat gets smaller after evacuation. We have not done the detailed study about
this effect at this point.

4.6 Summary of This Chapter

• Our experimental apparatus consists of the optical system including the ring cavity,
turntable, and data acquisition system.

• All the componentswere developed and assembled successfully. The noise require-
ments to improve the current limits on the parity-odd Lorentz violation were
achieved.

• The current frequency noise was limited by the vibration of the turntable during
the rotations. The noise level is 2 orders of magnitude larger than that taken when
the ring cavity is not rotated.

• Search for the Lorentz violation is performed by rotating the ring cavity in positive
and reverse directions alternately.

• The Lorentz violation signal is split into intervals of a rotational period using the
home signal. Data analysis will be performed for each rotations.

• TheLorentz violation signalwas taken for 393days between July 2012 andOctober
2013. During the data acquisition, the ring cavity was rotated approximately 1.7
million times.

http://dx.doi.org/10.1007/978-981-10-3740-5_5
http://dx.doi.org/10.1007/978-981-10-3740-5_5
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Chapter 5
Data Analysis

Abstract We have done the analysis of the year-long observational data taken from
July 2012 toOctober 2013. In this chapter,we explain how to extractLorentz violation
parameters from the year-long data. Then, we show the results of our data analysis,
and study the systematic uncertainties. Here,we do the data analysis in the framework
of the spherical harmonic decomposition of the light speed anisotropy. However, we
have also done the analysis in the framework of the Standard Model Extension. We
only show the results here, and the details of the data analysis in the Standard Model
Extension will be described in Sect. 7.1.

Keywords Spherical coefficients · Standard model extension · Uncertainty

5.1 Method

The Lorentz violation signal in our experiment is the resonant frequency difference
between the clockwise and the counterclockwise directions of the optical ring cavity.
If we only consider one dipole component of the anisotropy, the expression of the
Lorentz violation signal is given by Eq. (3.5), and it was

s(t) = δν

ν
= (n − 1)d

L + (n − 1)d

1√
π

y¬0
1 cos θ. (5.1)

Here, θ represents the rotational angle of the cavity. Since the Earth moves around
the sun as it rotates on its own axis, we cannot simply replace θ to be ωrott . In order
to compare the limits on y¬m

l with various experiments, we have to set a frame in
which we can reasonably assume that y¬m

l are constant. The frame most commonly
used is SCCEF (sun-centered celestial equatorial frame) [1]. This is because the
velocity of SCCEF with respect to the CMB rest frame is approximately constant
(v = 369 km/s [2]). The CMB rest frame is the leading preferred frame candidate,
and we can reasonably assume that the Lorentz violation parameters are constant in
its inertial frames.

© Springer Nature Singapore Pte Ltd. 2017
Y. Michimura, Tests of Lorentz Invariance with an Optical Ring Cavity,
Springer Theses, DOI 10.1007/978-981-10-3740-5_5
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In this section, we first introduce SCCEF, and derive the full formula of the
signal. We then describe how to extract the Lorentz violation parameters y¬m

l from
the measurement data.

5.1.1 Sun Centered Celestial Equatorial Frame

As illustrated in Fig. 5.1, the origin of the SCCEF is the sun. The X -axis points
toward the Earth at the autumnal equinox, and the Z -axis points toward the north of
the axis of rotation of the Earth. The X -Y plane is the same as the equatorial plane
of the Earth, and is tilted by η = 23.4◦ with respect to the plane of the revolution of
the Earth. From the CMB observation, it is known that the velocity of SCCEF with
respect to the CMB rest frame is approximately constant and the velocity is

v = v

⎛
⎝
cosψ cosϕ
sinψ cosϕ

− sinψ

⎞
⎠ , (5.2)

where v = 369 km/s, ψ = 168◦, and ϕ = −7.2◦ [2]. Here, ψ and ϕ is the right
ascension and the declination, respectively.

If we set the x-axis of the laboratory frame to point south, and the z-axis to point
zenith, the spatial coordinate transformation matrix can be written as [1]

R =
⎛
⎝
cosχ cosω⊕T⊕ cosχ sinω⊕T⊕ − sinχ

− sinω⊕T⊕ cosω⊕T⊕ 0
sinχ cosω⊕T⊕ sinχ sinω⊕T⊕ cosχ

⎞
⎠ . (5.3)

Here, χ is the colatitude of the laboratory frame, and since we did the experiment
in Tokyo (northern latitude of 35.7◦), χ = 54.3◦. ω⊕ is the angular frequency of the
Earth rotation, and T⊕ is the time from the vernal equinox in 2000. T⊕ = 0 is set

Fig. 5.1 SCCEF and the laboratory frame
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when the y-axis of the laboratory frame points the same direction as the Y -axis of
SCCEF in 2000, and it was on March 20, 2000 at 16:30 JST [3].

5.1.2 Expression of the Lorentz Violation Signal

To derive the full formula of the Lorentz violation signal, we first consider the
expression of the speed of light propagating in the x-y plane of the laboratory frame.
If we set the angle between the x-axis and the unit vector along the direction of the
propagation of light to be α, the unit vector can be written as

êlab =
⎛
⎝
cosα
sinα
0

⎞
⎠ . (5.4)

Using the transformation matrix R in Eq. (5.3), this vector can be written as

êSCCEF ≡
⎛
⎝
sin θ cosφ
sin θ sin φ
cos θ

⎞
⎠ = R−1 êlab. (5.5)

in SCCEF (Fig. 5.2). Thus, the polar angle θ and the azimuthal angle φ indicating
the direction of the propagation of light are

cos θ = − sinχ cosα, (5.6)

cosφ = cosχ cosω⊕T⊕ cosα − sinω⊕T⊕ sinα√
cos2 χ cos2 α + sin2 α

, (5.7)

sin φ = cosχ sinω⊕T⊕ cosα + cosω⊕T⊕ sinα√
cos2 χ cos2 α + sin2 α

. (5.8)

By treating θ and φ as functions of α, the speed of light in the laboratory frame
can be expressed as

clab(α) = c(θ(α),φ(α)). (5.9)

In particular, the shift in the speed of light from the anisotropy component indicated
by l and m in the spherical harmonic decomposition is

δcml lab(α) = cml (θ(α),φ(α)) − 1 (5.10)

= Re
[
( y¬m

l )
∗Ym

l (θ(α),φ(α))
]
. (5.11)

Remind that
δcml lab(α + π) = (−1)lδcml lab(α) (5.12)
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Fig. 5.2 Angles indicating the propagation direction of light in the SCCEF and the laboratory
frame

Fig. 5.3 Optical ring cavity
on the laboratory frame x-y
plane

follows from the characteristic of the spherical harmonics.
Now, let’s consider a ring cavity placed on the x-y plane as shown in Fig. 5.3. The

lengths of the each arm can be written as

LA = LA1 + LA2 = 2d

cos ζ
(5.13)

LB = d

cos ξ
(5.14)

LC = 3d

cos ζ
(5.15)

LD = 5d tan ζ + d tan ξ (5.16)

Here, d = 20 mm and ζ = 9.5◦ in our ring cavity, and from Snell’s law,

ξ = arcsin
sin ζ

n
(5.17)

We can derive the shift in the resonant frequencies similarly to what we have done
in Sect. 3.1.1. The resonant condition for the counterclockwise direction is

http://dx.doi.org/10.1007/978-981-10-3740-5_3
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m

ν
= LA

clab(ωrott − ξ + ζ)
+ nLB

clab(ωrott)

+ LC

clab(ωrott − ξ − ζ − π)
+ LD

clab(ωrott − ξ − π/2)
. (5.18)

Here, t = 0 is set when the optical path inside the silicon piece is aligned to the
x-axis. The resonant condition when there is no Lorentz violation is

m

ν+
= Lopt, (5.19)

where Lopt ≡ LA + nLB + LC + LD is the round-trip optical path length. By com-
paring these two equations, the shift in the resonance frequency for the counterclock-
wise direction is

ν+ − ν

ν
= LA

Lopt
δclab(ωrott − ξ + ζ) + nLB

Lopt
clab(ωrott)

+ LC

Lopt
δclab(ωrott − ξ − ζ − π) + LD

Lopt
δclab(ωrott − ξ − π/2).

(5.20)

The resonant frequency shift for the clockwise direction can be obtained by reversing
the direction of the beam in each arm. This is the same as adding 180◦ to each α
angle. So, by using the symmetry of the spherical harmonics shown in Eq. (5.12),
the resonant frequency difference between both directions can be written as

δν

ν
= ν+ − ν−

ν
=

∞∑
l=0

l∑
m=0

(
1 − (−1)l

) ν+ − ν

ν

∣∣∣∣
m

l

, (5.21)

where
ν+ − ν

ν

∣∣∣∣
m

l

is the shift from y¬m

l component of the anisotropy.

The equation above is the expression of our Lorentz violation signal. As it is clear
from the expression, the anisotropy components with even l’s do not contribute to
the signal. This is because of the odd-parity nature of the apparatus and we can only
measure y¬m

l with odd l’s.

5.1.3 Extraction of the Spherical Coefficients from the Signal

As we have seen in the previous section, the resonant frequency difference between
twocounterpropagatingdirections varies at the frequenciesωmrm⊕ = mrωrot + m⊕ω⊕
due to the turntable rotation and the rotation of the Earth. So, we could perform a
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direct search for theLorentz violation by searching for variations at those frequencies.
However, a demodulation method is appropriate since ωrot � ω⊕.

We first consider a decomposition of the resonant frequency difference into har-
monics of ωrot,

δν

ν
=

∑
mr>0

[
Cmr cos (mrωrott) + Smr sin (mrωrott)

]
. (5.22)

A turntable rotation of 180◦ effectively interchanges the two counterpropagating
solutions, reversing the sign of δν/ν. This implies that we can concentrate our atten-
tion on odd values of mr.

The amplitudes Cmr and Smr slowly vary at harmonics of the sidereal frequency
ω⊕ and can be expanded as

Cmr =
∑
m⊕≥0

[
CC
mrm⊕ cos (m⊕ω⊕T⊕) + CS

mrm⊕ sin (m⊕ω⊕T⊕)
]
, (5.23)

Smr =
∑
m⊕≥0

[
SCmrm⊕ cos (m⊕ω⊕T⊕) + SS

mrm⊕ sin (m⊕ω⊕T⊕)
]
. (5.24)

Any non-negative m⊕ can contribute, but the multipole structure of the spherical
harmonics predicts that as far as considering the anisotropy up to l = lmax, we can
limit our focus to 0 ≤ m⊕ ≤ lmax. In this thesis, we restrict ourselves to lmax = 3 and
consider combinations of mr = 1, 3 and m⊕ = 0, 1, 2, 3 only.

The relationship between the spherical coefficients y¬m

l and these modulation
amplitudes can be obtained by demodulating Eq. (5.21). The relation is given in
Table5.1. By demodulating the Lorentz violation signal, we can extract the Lorentz
violation parameters.

Note that the silicon piece provides additional asymmetry that increases the num-
ber of spherical coefficients that can be accessed by our experiment. The calculation
shows that without the silicon, we lose sensitivity to all l = 1 coefficients. It also
reduces the number of l = 3 coefficients that can be measured. The loss in the sen-
sitivity comes from the fact that dipole effects cancel around a closed path without
matter.

Also, as we can see from Table5.1, modulation amplitudes withm⊕ = 0 give y¬m

l
withm = 0. So, without the turntable rotation, we cannot access to there coefficients.
This is because of the symmetric structure of m = 0 components around the Z -axis
of the SCCEF. The effect fromm = 0 anisotropywill not bemodulated by the Earth’s
rotation, since the Z -axis is parallel to the Earth’s rotational axis.
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Table 5.1 The relationship between the nonzero modulation amplitudes and the spherical coeffi-

cients y¬m
l . The numbers mr and m⊕ represent the harmonics of the turntable rotation frequency

and sidereal frequency

mr m⊕ CC
mrm⊕ CS

mrm⊕ SCmrm⊕ SSmrm⊕

1 0 −0.22 y¬0
1 – 0 –

+0.089 y¬0
3

1 1 0.11Re[ y¬1
1] 0.11Im[ y¬1

1] 0.19Im[ y¬1
1] −0.19Re[ y¬1

1]
+0.16Re[ y¬1

3] +0.16Im[ y¬1
3] −0.032Im[ y¬1

3] +0.032Re[ y¬1
3]

1 2 −0.0025Re[ y¬2
3] −0.0025Im[ y¬2

3] −0.14Im[ y¬2
3] 0.14Re[ y¬2

3]
1 3 −0.067Re[ y¬3

3] −0.067Im[ y¬3
3] −0.12Im[ y¬3

3] 0.12Re[ y¬3
3]

3 0 −0.17 y¬0
3 – 0.18 y¬0

3 –

3 1 0.10Re[ y¬1
3] −0.19Re[ y¬1

3] −0.11Re[ y¬1
3] −0.18Re[ y¬1

3]
+0.19Im[ y¬1

3] +0.10Im[ y¬1
3] 0.18Im[ y¬1

3] −0.11Im[ y¬1
3]

3 2 −0.19Re[ y¬2
3] 0.17Re[ y¬2

3] 0.20Re[ y¬2
3] 0.16Re[ y¬2

3]
−0.17Im[ y¬2

3] −0.19Im[ y¬2
3] −0.16Im[ y¬2

3] 0.20Im[ y¬2
3]

3 3 0.14Re[ y¬3
3] −0.15Re[ y¬3

3] −0.14Re[ y¬3
3] −0.14Re[ y¬3

3]
+0.15Im[ y¬3

3] +0.14Im[ y¬3
3] +0.14Im[ y¬3

3] −0.14Im[ y¬3
3]

5.2 Results

The analysis starts by demodulating the data at frequencies ωrot and 3ωrot to extract
the amplitudes Cmr and Smr in Eq. (5.22) for each rotation. We only used an interval
of 360◦ in the middle of each 420◦ rotation where the rotational speed is constant.
The demodulation was done by least-squares fit to Eq. (5.22). For negative rotation,
we used −ωrot and −3ωrot instead of ωrot and 3ωrot to extract the amplitudes.

Time series data of Cmr and Smr are split into one-day intervals and fit to
Eqs. (5.23) and (5.24) by the least squares method to extract the modulation ampli-
tudesCC

mrm⊕ ,C
S
mrm⊕ , S

C
mrm⊕ , and S

S
mrm⊕ for each day. The results are shown in Figs. 5.4

and 5.5 as pairs of quadratic amplitudes.
Taking the weighted average over the 393days gives our measured values for the

modulation amplitudes, which are listed in Table5.2. The weight were calculated
using the standard uncertainties of the modulation amplitudes for each day, which
can be derived from the least squares method. We obtained standard uncertainties
of ∼1 × 10−15 for mr = 1 amplitudes, and ∼6 × 10−16 for mr = 3 amplitudes. No
deviation from zero bymore than 2σwas found. Thus,we conclude that no significant
evidence for anisotropy in the speed of light in a sidereal frame can be claimed from
our data.
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Figures5.6 and 5.7 show histograms for each modulation amplitude. Compared
with a normal distribution, each distribution has an excess tail. The origin of this
non-Gaussian component is unidentified yet, but we guess this is from nonstationary
or transient vibrations from the turntable or the cables. The statistical uncertainties
could be reduced by identifying and mitigating this non-Gaussian noise.

The level of non-Gaussianity can be somewhat quantified by a kurtosis parameter.
Kurtosis (or excess kurtosis) is defined as

β2 = μ4

σ4
− 3, (5.25)

where μ4 is the fourth moment about the mean and σ is the standard deviation. When
there is a large excess tail, β2 will be positive and large. β2 is zero for a normal
distribution, but the distributions of our modulation amplitudes give a few tens of
β2, as shown in Figs. 5.6 and 5.7.

Toget constraints on theLorentz violationparameters y¬m

l ,weused the relationship
between the modulation amplitudes and y¬m

l , which is shown in Table5.1. The results
are summarized in Table5.3. We obtained standard uncertainties of ∼6 × 10−15 for
l = 1 coefficients, and ∼2 × 10−15 for l = 3 coefficients. Note that the coefficients
y¬m

l with m �= 0 are complex, bound. The uncertainties on l = 1 coefficients are
larger than those of l = 3 components. This stems from the noise difference at the
rotational frequency ωrot and at 3ωrot.

In terms of δc/c, our upper limits are more than an order of magnitude better
than the previous best limit from a cavity experiment [4], and are comparable with
the previous best limit from a Compton scattering experiment [5]. See Table2.1 for
comparison of limits from previous experiments.

Compared with the Compton scattering experiment, our experiment can measure
coefficients withm = 0, since we rotate the ring cavity. As discussed in the previous
section, the Compton scattering experiment only uses the Earth’s rotation alone,
and thus cannot access m = 0 coefficients. Also, since we did the phase sensitive
demodulation for the data analysis. Thus, we could put bounds on all the parity-odd
coefficients up to l = 3.

5.3 Results in the Framework of the SME

We have also done the analysis in the framework of the SME. The method is the
same as the one we have used in the previous sections. The relationship between
the modulation amplitudes and the SME coefficients are summarized in Table7.2,
and the derivation is described in Sect. 7.1. Here we restrict ourselves to consider the
camouflage coefficients of dimensions d = 6 and d = 8.

To get constraints on the SME coefficients, we consider each dimension d = 6
and d = 8 separately and place constraints under the assumption that only one of the
two sets of coefficients is nonzero.

http://dx.doi.org/10.1007/978-981-10-3740-5_2
http://dx.doi.org/10.1007/978-981-10-3740-5_7
http://dx.doi.org/10.1007/978-981-10-3740-5_7
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Fig. 5.4 Modulation amplitudes for mr = 1. For clarity, the error bars are omitted except for one
data point to indicate the typical standard uncertainties. The mean values of all 393 points are shown
as red dots
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Fig. 5.5 Modulation amplitudes for mr = 3. For clarity, the error bars are omitted except for one
data point to indicate the typical standard uncertainties. The mean values of all 393 points are shown
as red dots
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Table 5.2 Constraints on the δν/ν modulation amplitudes for mr = 1, 3 and m⊕ = 0, 1, 2, 3. All
values are in units of 10−15

mr m⊕ CC
mrm⊕ CS

mrm⊕ SCmrm⊕ SSmrm⊕
1 0 −0.1 ± 1.0 – 0.2 ± 1.0 –

1 1 −0.6 ± 1.4 −1.2 ± 1.4 −0.3 ± 1.4 1.0 ± 1.4

1 2 −0.9 ± 1.4 −0.2 ± 1.4 −0.1 ± 1.4 1.0 ± 1.4

1 3 −0.8 ± 1.4 0.2 ± 1.4 −0.5 ± 1.4 0.6 ± 1.4

3 0 0.12 ± 0.46 – 0.15 ± 0.46 –

3 1 −0.79 ± 0.64 −1.1 ± 0.65 −0.48 ± 0.64 −0.51 ± 0.65

3 2 −1.1 ± 0.65 0.57 ± 0.65 −0.46 ± 0.65 0.21 ± 0.65

3 3 0.40 ± 0.65 0.16 ± 0.65 −0.36 ± 0.64 0.75 ± 0.65

Table 5.3 Spherical
coefficients with 1σ
uncertainties determined from
this work. All values are in
units of 10−15

Coefficient Measurement

y¬0
1 0.4 ± 4.4

Re[ y¬1
1] −5.7 ± 6.3

Im[ y¬1
1] −3.2 ± 6.2

y¬0
3 0.1 ± 1.9

Re[ y¬1
3] 2.9 ± 2.2

Im[ y¬1
3] −3.2 ± 2.1

Re[ y¬2
3] 2.1 ± 1.8

Im[ y¬2
3] 1.5 ± 1.8

Re[ y¬3
3] −0.2 ± 2.2

Im[ y¬3
3] −0.7 ± 2.2

The results are summarized in Table5.4. For d = 6, there is a total of 3 parity-odd
camouflage coefficients, and our experiment constrains the entire coefficient space
accessible to parity-odd cavity experiments. For d = 8, we find that 10 combinations
of coefficients contribute to the modulations of the frequency difference δν/ν, and
we got 10 bounds on those combinations. There is a total of 13 parity-odd camouflage
coefficients for d = 8, so 3 linear combinations of coefficients remain untested. These
may be accessed by future ring cavity experiments with different configurations,
yielding sensitivities to different combinations of coefficients.

The results in Table5.4 are the first bounds on parity-odd camouflage coefficients
for the Lorentz violation. The current best bounds on the parity-even coefficients
come from the microwave cavity experiment in Ref. [6]. While this experiment and
our experiment probe two independent sets of Lorentz violations, the sensitivity was
improved by closer to a factor of a million for d = 6, and a factor of 1014 for d = 8
violations. See Table7.1 for comparison of limits from the previous experiment.

The radical increase in the sensitivity results from higher frequencies. While their
experiment used amicrowavewith the frequency of 10GHz,we used the optical laser

http://dx.doi.org/10.1007/978-981-10-3740-5_7
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Table 5.4 SME camouflage coefficients with 1σ uncertainties determined from this work

Dimension Coefficient Measurement

d = 6 (c¬(6)
F )

(0E)
110 (−0.1 ± 1.5) × 103 GeV−2

Re[(c¬(6)
F )

(0E)
111 ] (−0.8 ± 1.1) × 103 GeV−2

Im[(c¬(6)
F )

(0E)
111 ] (−0.6 ± 1.0) × 103 GeV−2

d = 8 −0.020(c¬(8)
F )

(0E)
110 + (c¬(8)

F )
(0E)
310 (−0.2 ± 1.9) × 1019 GeV−4

Re[−0.020(c¬(8)
F )

(0E)
111 + (c¬(8)

F )
(0E)
311 ] (1.4 ± 1.3) × 1019 GeV−4

Re[−0.020(c¬(8)
F )

(0E)
111 + (c¬(8)

F )
(0E)
311 ] (0.1 ± 1.3) × 1019 GeV−4

(c¬(8)
F )

(0E)
330 (−0.8 ± 3.3) × 1019 GeV−4

Re[(c¬(8)
F )

(0E)
331 ] (−0.3 ± 1.9) × 1019 GeV−4

Im[(c¬(8)
F )

(0E)
331 ] (−2.8 ± 1.9) × 1019 GeV−4

Re[(c¬(8)
F )

(0E)
332 ] (2.2 ± 1.3) × 1019 GeV−4

Im[(c¬(8)
F )

(0E)
332 ] (0.2 ± 1.3) × 1019 GeV−4

Re[(c¬(8)
F )

(0E)
333 ] (−0.1 ± 1.6) × 1019 GeV−4

Im[(c¬(8)
F )

(0E)
333 ] (−0.1 ± 1.6) × 1019 GeV−4

with the frequencyof 200THz.Naive estimates inSect. 7.1.1.2 suggest improvements
of roughly 8 orders ofmagnitude for d = 6 and 16 orders ofmagnitude for d = 8may
be possible. An achieved improvement factor was a bit less because their sensitivity
was at |δc/c| � 10−16 level, whereas ours was at 10−15 level.

5.4 Systematic Uncertainties

A number of systematic effects was studied. A major cause of the systematic offset
was the tilt of the base of the turntable. As we have discussed in Sect. 3.3.5, the tilt
does not couple into the Lorentz violation signal, but it did in real when the tilt is
large. The coupling mechanismwas not clear, but the tilt of the fiber collimator could
create a slight change in the alignment of the incident beam into the cavity. Also,
the tilt of the photodetectors could create the fake signal due to ununiformity of the
quantum efficiency. If the tilt fluctuates in 1/m⊕ of a sidereal period, it will give
a systematic offset to the resulting Lorentz violation coefficients. The measured tilt
stayedwithin 0.2mrad and this effect was less than 10% of our statistical uncertainty.
The effect was estimated by intentionally tilting the table andmeasuring the coupling
factor.

http://dx.doi.org/10.1007/978-981-10-3740-5_7
http://dx.doi.org/10.1007/978-981-10-3740-5_3
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The tilt was measured with an accelerometer (KISTLER 8302A2). The tempera-
ture was also recorded simultaneously with a temperature sensor (Texas Instruments
LM35). The tilt and the temperature both showed similar drift in a sidereal period.
Thus, we guess that the tilt change was induced by the temperature change. The
relation between the tilt and the temperature was approximately 1 mrad/K.

The Sagnac effect also gives systematic offset to the modulation amplitudes if the
rotational speed of the turntable fluctuates in 1/m⊕ of a sidereal period. However,
the measured fluctuation was less than 1 mrad/sec, and this effect was less than 2%
of our statistical uncertainty. The rotational speed was measured with a fiber optic
gyro (Japan Aviation Electronics JG-201FA).

Another type of a systematic uncertainty is a calibration uncertainty, which does
not fake the Lorentz violation signal, but changes the magnitude of our limits on the
Lorentz violation. There was a slight drift in the calibration factor for the Lorentz
violation signal, which originated from slight detuning in the laser frequency servo.
This detuning was supposed to be introduced by the polarization drift of the incident
beam. This is because the change in the polarization state of the incident beam
changes the zero crossing point of the error signal (see Sect. 7.3).We have introduced
a PBS to reduce this drift, but slight rotations in waveplates could also create the
polarization change. The detuning can be monitored from the offset level of the
acquired data and this calibration uncertainty was estimated to be 3%.

As we have seen in Sect. 4.2.3, the uncertainty in the measurement of the open-
loop transfer function G and the frequency actuation efficiency of the piezoelectric
actuator A also gives calibration uncertainty. The uncertainty was estimated to be 3
and 5% for the measurement of G and A, respectively (see Sect. 7.4).

Systematic uncertainties are summarized in Table5.5. Other minor calibration
uncertainties due to the uncertainties in the silicon refractive index and optical path
lengths are also shown. The calibration uncertainty was 7% in total.

There were also uncertainties in the orientation of the cavity with respect to the
SCCEF. This is due to timing uncertainty in data acquisition, and uncertainty in
the orientation of the cavity with respect to the laboratory frame, in which x-axis
points south. The effect from the orientation uncertainty is zero when the noise is
purely Gaussian and quadratic modulation amplitudes have equal standard deviation.
However, due to slight ellipticity, orientation uncertainty affects the statistical uncer-
tainty on the Lorentz violation coefficients. Our calculation shows that the effect is
negligibly small, as summarized in Table5.5.

5.5 Summary of This Chapter

• By demodulating the Lorentz violation signal with the turntable rotation frequency
and the sidereal frequency, we obtained the modulation amplitudes.

• We extracted the spherical coefficients y¬m

l from the modulation amplitudes.
• No significant Lorentz violation was found at the |δc/c| � 10−15 level, and put
limits on y¬m

l at ∼6 × 10−15 level for l = 1, and at ∼2 × 10−15 level for l = 3
coefficients. These limits are more than an order of magnitude better than the

http://dx.doi.org/10.1007/978-981-10-3740-5_7
http://dx.doi.org/10.1007/978-981-10-3740-5_4
http://dx.doi.org/10.1007/978-981-10-3740-5_7
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Table 5.5 Summary of systematic uncertainties. Contribution ratios with respect to the statistical
uncertainty are shown

Cause Amount Ratio (%)

Offset

Sagnac effect <1 mrad/sec <2

Turntable tilt <0.2 mrad <10

Calibration

Cavity detuning – 3

Openloop measurement – 3

Laser frequency actuation A = 1.29 ± 0.6 MHz/V 5

efficiency measurement

Silicon refractive index n = 3.69 ± 0.01 0.4

Length Lopt = 192 ± 1 mm 0.5

Orientation

Timing <1 min 2 × 10−5

Lab frame orientation <10◦ 0.03

previous best limit from a cavity experiment, and are comparable with a Compton
scattering experiment.

• Wehave also done the analysis in the framework of the SME, and put the first limits

on 13 camouflage coefficients (c¬(d)

F )
(0E)
jlm at ∼1 × 103 GeV−2 level for dimension

d = 6, and ∼2 × 1019 GeV−4 level for d = 8 coefficients. The sensitivity for
d = 6 and d = 8was improved by a factor of amillion and 14 orders ofmagnitude,
respectively, over existiting parity-even bounds.

• The estimated systematic offsetwas less than 10%of our statistical uncertainty, and
the calibration uncertainty was 7%. The most contributing systematic uncertainty
came from the tilt of the base of the turntable.
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Chapter 6
Conclusion

Abstract In this chapter, we will summarize our work and make a discussion about
our results.Wewill also give prospects for future parity-odd cavity tests of theLorentz
violation, and conclude our research.

Keywords Lorentz violation · Planck-scale · Continuous rotation

6.1 Summary

We have developed an apparatus to test the Lorentz invariance in electrodynamics.
The main component of the apparatus was an optical ring cavity, and we searched
for the resonant frequency difference between counterpropagating directions. When
there is any Lorentz violation, the constancy of the speed of light is violated. In
particular, parity-odd components of the light speed anisotropy create the resonant
frequency difference.

The propagation direction dependence of the speed of light c(θ, φ) can be decom-
posedwith the spherical harmonicsYm

l (θ, φ). Theparity-odd anisotropies are l = odd
components, which come from parity-odd Lorentz violation.We have introduced the
spherical coefficients y¬m

l to represent the size of the anisotropy for each mode.
The resonant frequency difference was measured with a double-pass configura-

tion. The beam from the laser source was fed into the ring cavity in the counterclock-
wise direction and the laser frequency was locked to the counterclockwise resonant
frequency. The transmitted beam from the ring cavity was reflected back into the cav-
ity again, but in the clockwise direction. From its reflection, the error signal which
is proportional to the resonant frequency difference was obtained. This double-pass
configuration enabled a null measurement of the resonant frequency difference. Also,
the differential measurement enabled a rejection of the effects from the cavity length
fluctuations, since they are common to both directions.

We took the Lorentz violation signal for more than a year starting from July 2012.
During the observation run, the ring cavity was rotated in order to modulate the
Lorentz violation signal. The data were taken for 393days, and the ring cavity was
rotated for approximately 1.7 × 106 times.

© Springer Nature Singapore Pte Ltd. 2017
Y. Michimura, Tests of Lorentz Invariance with an Optical Ring Cavity,
Springer Theses, DOI 10.1007/978-981-10-3740-5_6
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The data analysis was done with a demodulation method. First, the signal was
demodulated at the harmonics of the turntable rotation frequency mrωrot to get the
modulation amplitudes for each rotation. One day data of these modulation ampli-
tudes were then demodulated at the harmonics of the sidereal frequencym⊕ω⊕ to get
the sidereal modulation amplitudes. To do the data analysis up to l = 3, we restricted
ourselves to mr = 1, 3 and m⊕ = 0, 1, 2, 3.

From the modulation amplitudes we have extracted, we concluded that no signifi-
cant evidence for the Lorentz violation was found at the |δc/c| � 10−15 level. These
modulation amplitudes are related to the spherical coefficients y¬m

l , and we put limits
on y¬m

l at ∼6 × 10−15 level for l = 1, and at ∼2 × 10−15 level for l = 3 coefficients.
Our limits were more than an order of magnitude better than previous best cavity
limits. Also, our experiment was the first experiment which could put limits on all
the coefficients for l = 1 and l = 3.

In the framework of the Standard Model Extension, we have put the limits on 13

camouflage coefficients (c¬(d)

F )
(0E)
jlm at ∼1 × 103 GeV−2 level for dimension d = 6,

and ∼2 × 1019 GeV−4 level for d = 8 coefficients, for the first time. Over exist-
ing parity-even bounds from the microwave cavity experiment, the sensitivity was
improved by a factor of a million for d = 6, and by 14 orders of magnitude for d = 8
coefficients. The improvement factors were large since the effect of the Lorentz
violation scales with νd−4, and the optical frequency is higher than the microwave
frequency.

6.2 Discussions

The previous best parity-odd cavity test was done by Baynes et al. [1], and they
tested the isotropy of the speed of light at |δc/c| � 2 × 10−13 level. The sensitivity
improvement over their experiment by a factor of ∼30 is explained in part by a
longer observation time and a higher refractive index of the dielectric piece used.
The observation time was a year instead of their 2 months. We used silicon with a
refractive index of n = 3.69, whereas they used optical glass with n = 1.44. These
two effects simply gave us factor of a ∼6 improvement.

The unexplained factor of∼5 improvement could be from higher rotational speed
and/or less noise from the use of the double-pass configuration. It is hard to compare
with the Baynes experiment since we do not have their noise spectrum. The common
mode rejection ratio (CMRR) from the differential measurement of the resonant
frequencies for counterpropagating directions is also not measured yet at this point.
The CMRR could be measured by modulating the cavity length with temperature,
and measuring the feedback signal for the laser frequency servo and the Lorentz
violation signal at the same time.

There are virtually no quantitative predictions for the light speed anisotropy, but
we might expect the SME camouflage coefficients to involve some mass scale M .
The simplest possibility is that the coefficients scale like M4−d from dimensional
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analysis. If we assume that new physics beyond the Standard Model comes from
the Planck-scale origin, it is natural to use the Planck mass (Mpl = 1.2 × 1019 GeV)
for M . However, it has been suggested that the coefficients might involve a lower
energy scale, possibly in conjunction with the Planck scale. The lower energy scale
could be electroweak scale mw = 2.5 × 102 GeV, considering scenarios where the
Lorentz breaking is connected to the Higgs mechanism.

Our new limits on the camouflage coefficients at 103 GeV−2 level for dimension
d = 6 suggest M2 to be larger than 10−3 GeV2 level. Therefore, we can say that we
put limit on the scale where the Lorentz violations arise at M � 0.03GeV. Although
this energy scale is relatively low, this is the first limit from cavity experiments, to
the best of our knowledge.

Also, there are theories where d = 6 violations might be quite large. For example,
noncommutative geometry gives d = 6 violations at approximately 1GeV−2, con-
sidering noncommutative effects have a natural length scale of 10−15 m. This level
is within the experimental reach, and we can also reach this level by increasing the
sensitivity by 5 orders of magnitude in terms of δc/c. Also, using the laser with
higher frequency, such as ultraviolet or X-ray, would simply increase the sensitivity
to such higher order Lorentz violations.

6.3 Future Prospects

The current noise level of our apparatus was dominated by the vibration of the
turntable. This was because we used a simple commercial motor for the rotation,
without any vibration isolation system. Most recent parity-even experiments [2, 3]
have achieved sensitivities at the 10−17 level with a dedicated vibration isolation
system. Also, the noise level of our apparatus when the turntable is not rotating was
less by 2 orders of magnitude. These naively suggest the potential for a hundredfold
improvement in future cavity tests of parity-odd Lorentz violation.

It is important to note that the estimated thermal noise level is more than 5 orders
of magnitude below our current sensitivity. This means that we do not need to cool
down the cavity to reduce thermal noise, until we reach the sensitivity at the 10−20

level. However, cryogenic operation might be needed in order to reduce thermal-
optic coefficient of silicon. Effects from temperature dependence of the refractive
index can also simply be reduced by introducing a temperature stabilization system.

Tilt fluctuations in a turntable rotational period would be an issue in future parity-
odd tests. In our experiment, we did not apply any tilt control, and the tilt fluctuation
stayed within 0.2mrad. The estimated effect to the result was at the 10−16 level even
in the pessimistic case. Thus, in order to test the Lorentz invariance at the 10−17 level,
tilt fluctuation should be smaller than 2µrad. This can be achieved by applying a
similar tilt control system that has been used for parity-even experiments.

Vibrations and tilt fluctuations could be reduced by suspending the apparatus from
the motor with flexible joint. An example of such a rotation system has been used
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for a modern Eötös experiment to test the weak equivalence principle with rotating
torsion balance [4].

Also, fixing all the optics monolithically on a single optical bench would reduce
the effects of vibration and tilt. This technique has been developed for space-based
interferometric gravitational wave detector projects, such as LISA [5], DECIGO [6],
and their pathfinders. These monolithic optical benches can be constructed using
hydroxide-catalysis bonding of optical components to a baseplate made of materials
with low thermal expansion [7].

Space-based test of Lorentz invariance could also be taken into reality, when
monolithic optical benches are considered. Quiet environment in space and contin-
uous smooth spin of a satellite would allow the sensitivity to reach into the 10−20

regime [8].
Continuous rotation can also be done in ground-based laboratories by using a slip

ring to extract the signals from and provide power to the apparatus. There are mainly
three advantages for continuous rotation. From the stability point of view, it will
provide better rotational speed stability and longer duration of the laser frequency
lock, since there will be no inversions of rotational directions. Also, duty cycle will
be increased. In our setup, about 20% of the time was useless for the data analysis
because of the dead time for inversions of rotations.

Finally, continuous rotation has an advantage from the data analysis point of view.
Since the cavity was rotated alternately, modulation amplitude extraction was done
for each rotation. Demodulation will be more sensitive if we can use data containing
multiple rotations. This is also a merit for noise hunting.

The reason why we did not use a slip ring to realize continuous rotation was
because slip rings create the noise which is coherent to the rotation. This noise could
be subtracted by monitoring the noise with a different cable from the cable for the
Lorentz violation signal. This noise can also be fundamentally avoided by extracting
the data with wireless signal transmission technique.

6.4 Conclusion

We have performed a search for the Lorentz violation in electrodynamics using an
asymmetric optical ring cavity on a turntable. From the analysis of a year-long obser-
vational data, we put limits on dipole and hexapole components of anisotropy at the
level of |δc/c| � 10−15. Within the frame work of the Standard Model Extension,
we have put the first limits on parity-odd higher order Lorentz violations. From this
research, we have put the limit on the energy scale where new physics arises. Signif-
icant sensitivity improvement could be done in the future upgrade of the apparatus.
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Chapter 7
Appendix

Abstract This chapter is a collection of appendices for this thesis. In Sect. 7.1, we
show the details of the analysis in the framework of the Standard Model Extension.
Section7.2 is an introduction to the feedback control used in the laser frequency
servo, and its noise analysis. Section7.3 summarizes the basics of optical cavities
and error signal extraction method used in our experiment. Section7.4 describes the
calibrationmeasurement for the laser frequency actuation. Photos of the experimental
setup are shown in Sect. 7.5.

Keywords Standard model extension · Camouflage coefficients · Transfer func-
tion · Optical cavity · Double-pass configuration · Michelson interferometer

7.1 Standard Model Extension

The Standard Model Extension (SME) [1] is the theoretical framework to compare
the precision of various experimental tests of Lorentz invariance and CPT symmetry.
Here, we will briefly describe the SME coefficients that can be measured with our
experiment. We will also show how to extract those coefficients from the data. Note
that here we only show the minimum set of definitions and equations that are used
to analyze our data. For more comprehensive understanding of the SME in arbitrary
dimension, see Refs. [2, 3].

7.1.1 Overview of the SME Electrodynamics

In this section,wewill introduce the photonic Lagrangian density in the framework of
the SME, and describe the coefficients that can bemeasured with cavity experiments.
By adding the Lorentz violating terms in the Lagrangian density, the light speed
dependence on polarization, wavelength, and propagation direction are introduced.
Each of the effects are connected to different types of the SME coefficients and

© Springer Nature Singapore Pte Ltd. 2017
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they are called the birefringence coefficients, the dispersion coefficients, and the
camouflage coefficients, respectively.

The cavity experiments are sensitive to the camouflage coefficients, which
describe the anisotropy of the speed of light. We will also show the current limits on
the camouflage coefficients, as well as the birefringence and dispersion coefficients.

7.1.1.1 Camouflage Coefficients

The general Lagrangian density in the framework of the SME for photons can be
written as [2]

Lphoton = −1

4
FμνF

μν + 1

2
εκλμν Aλ(k̂AF )κFμν − 1

4
Fκλ(k̂F )κλμνFμν, (7.1)

where Aκ is the electromagnetic four-potential, and Fμν is the electromagnetic ten-
sor defined by Fμν ≡ ∂μAν − ∂ν Aμ. The differential operators k̂AF and k̂F can be
expanded with the mass dimension of the tensor operator d as

(k̂AF )κ =
∑
d=odd

(k(d)
AF )κ , (7.2)

(k̂F )κλμν =
∑

d=even

(k(d)
F )κλμν, (7.3)

where the sums range over values d ≥ 3.
The termswith d = odd violates the CPT symmetry as well as Lorentz invariance.

So, here we restrict ourselves only to k̂F terms, which involve CPT-even violations.
Also, by neglecting the leading order birefringent terms, the Lagrangian density
reduces to

Lphoton = −1

4
FμνF

μν − 1

2
Fκρ(ĉF )μνFρ

ν . (7.4)

Here, (ĉF )μν is the derivative of the scalar potential Φ̂F

(ĉF )μν = ∂μ∂νΦ̂F , (7.5)

and the relationship between ĉF and k̂F is shown in Ref. [2].
It is safe to neglect some operators result in vacuum birefringence here, since

there are tight constraints on birefringent coefficients. Constraints were obtained
from polarization measurements of light from cosmologically distant sources, such
as gamma ray bursts [2, 4].

By expanding the scalar potential Φ̂F in spherical harmonics,

Φ̂F =
∑
d jlm

ωd−2− j p j
0Y

m
l ( p̂)(c(d)

F )
(0E)
jlm , (7.6)



7.1 Standard Model Extension 87

we get the minimal set (c(d)
F )

(0E)
jlm of nonbirefringent spherical coefficients for Lorentz

violation. Here, ω and p = p p̂ are the angular frequency and the three-momentum
of photons.

The last step is to consider dispersive effects. We can also set the dispersion
coefficients to be zero since there are tight constraints from dispersion measurement
of light from gamma ray bursts [5]. No vacuum dispersion is ensured if Φ̂F can be
written in the form Φ̂F = p2Φ̃F . We can define the set of coefficients

Φ̃F =
∑
d jlm

ωd−4− j p j
0Y

m
l ( p̂)(c¬(d)

F )
(0E)
jlm . (7.7)

This result leads to the simple relation

(c(d)
F )

(0E)
jlm = (c¬(d)

F )
(0E)
jlm − (c¬(d)

F )
(0E)

( j−2)lm (7.8)

when there is no leading order birefringence or vacuum dispersion.

Thus, the set of (c¬(d)

F )
(0E)
jlm is the anisotropy coefficients in the SME, and they

are called the camouflage coefficients. For each even dimension d ≥ 6, there are
(d − 1)(d − 2)(d − 3)/6 independent components, including (d − 2)(d − 4)(2d −
3)/24 parity-odd components. Dimensional analysis shows that the dimension of the
camouflage coefficients is 4 − d. By convention, measurements of coefficients are
reported in units of GeV4−d .

7.1.1.2 Current Limits

Current constraints on the birefringence coefficients for d = 6 are at 10−32–10−31

GeV−2 level, and for d = 6 are at 10−25–10−24 GeV−4 level [4]. Constraints on
vacuum dispersion coefficients for d = 6 are at 10−21–10−19 GeV−2 level [5], and
for d = 8 are at 10−25 GeV−4 level [5]. These limits are obtained from astrophysical
observations of the light from gamma ray bursts.

Constraints on the camouflage coefficients are obtained by cavity experiments.
The first constraints are reported by Parker et al. [6] using the data described in
[7]. They used rotating microwave sapphire resonators that are orthogonally aligned
inside the cryostat. By using the data taken for 14months, they put limits on the even-
parity components of the anisotropy to the |δc/c| � 10−16 level. Their constraints
on the camouflage coefficients for d = 4 were at 10−14–10−17 level, for d = 6 were
at 108–1011 GeV−2 level, and for d = 8 were at 1033–1038 GeV−4 level.

As implied by Eq. (7.7), the effects of Lorentz violation typically grow with
frequency by a factor of ωd−4. This gives optical cavities an inherent advantage
over microwave cavities. We naively expect an increase in sensitivity by a factor of
∼104(d−4) compared with Ref. [6]. The frequency of the laser we used is 200 THz
and their frequency was 10 GHz.
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Table 7.1 Summary of current limits on SME camouflage coefficients

Dimension Parker et al. [6] This work

d = 6 Dipole No access First limit

Quadrupole 108–1011 GeV−2 No access

d = 8 Dipole No access First limit

Quadrupole 1036–1038 GeV−4 No access

Hexapole No access First limit

Octupole 1033–1034 GeV−4 No access

Table7.1 summarizes current limits on SME camouflage coefficients, and which
coefficients we can explore with our apparatus. We search for dipole and hexapole
anisotropy components to measure parity-odd camouflage coefficients for the first
time.

We note here that limit on vacuum dispersion from gamma ray bursts are also
put within the framework other than the SME. For example, the Fermi LAT (Large
Area Telescope) Collaboration put limit on vacuum dispersion arising from quantum
gravity effects [8].

7.1.2 Data Analysis in the SME

In this section, we will show the expression of our Lorentz violation signal in the
framework of the SME. Then, we show the relationship between the modulation

amplitudes described in Sect. 5.1.3 and the SME camouflage coefficients (c¬(d)

F )
(0E)
jlm .

The detailed calculation is described in Ref. [3].

7.1.2.1 Expression of the Lorentz Violation Signal

The resonant frequency difference between the counterclockwise and clockwise
directions due to the SME camouflage terms takes the form [3]

δν

ν
=

∑
d jlmrm⊕

Amrm⊕e
imrωrot t+im⊕ω⊕T⊕ (7.9)

where
Amrm⊕ = ΔM (d) lab

(c¬F ) jlmr

d(l)
mrm⊕(−χ)(c¬(d)

F )
(0E)
jlm⊕ . (7.10)

http://dx.doi.org/10.1007/978-981-10-3740-5_5
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Here,ΔM (d) lab

(c¬F ) jlm

is theM (d) lab

(c¬F ) jlm

matrix differencebetween the counterclockwise and

clockwise directions, and the M (d) lab

(c¬F ) jlm

matrices are experiment dependent factors

that determine the sensitivity of the cavity to the camouflage coefficients. χ is the
colatitude of the laboratory, and the d(l)

mrm⊕ are little Wigner matrices defined by

d(l)
mrm⊕(β) =

∑
k

(−1)mr−m⊕+k
√

(l + mr)!(l − mr)!(l + m⊕)!(l − m⊕)!
(l − mr − k)!(mr − m⊕ + k)!(l + m⊕ − k)!k!

·
(
cos

β

2

)2l−mr+m⊕−2k (
sin

β

2

)mr−m⊕+2k

, (7.11)

where sum over k is over such values that the factorials are nonnegative, i.e.
max(m⊕ − mr, 0) ≤ k ≤ min(l − mr, l + m⊕). Also, when |mr| > l or |m⊕| > l,
d(l)
mrm⊕(β) = 0.

We first considerM (d) lab
(cF ) jlm

matrix with dispersion coefficients to get theM (d) lab

(c¬F ) jlm

matrix. From Eq. (7.8), they are related with

M (d) lab

(c¬F ) jlm

= M (d) lab
(cF ) jlm

− M (d) lab
(cF )(l+2)lm

. (7.12)

We need theM (d) lab
(cF ) jlm

matrix elements for each arm of the cavity to get theM (d) lab
(cF ) jlm

matrix. They depend on the arm frame factors

U (d)
jl = −ωd−4n j−2

2ε

√
2l + 1

4π

[(
j − l(l + 1)

2

)
(n2 − 1)

+(d − 2 − j)(d − 3 − 3 j)n2 + j ( j − 1)n2
]

(7.13)

V (d)
jl = ωd−4n j−2(n2 − 1)

8ε

√
2l + 1

4π

(l + 2)!
(l − 2)! (7.14)

Here, ε and n are the permittivity and the refractive index of the arm, respectively.
Since we are not using magnetic elements, here we can set ε = n2. The M (d)

(cF ) jlm

matrix for the arm in the arm frame is given by

M (d) arm
(cF ) jlm

= U (d)
jl δm,0 + V (d)

jl δ|m|,2 (7.15)

By rotating this to the laboratory frame (see Fig. 5.3) using Wigner matrices, we get

http://dx.doi.org/10.1007/978-981-10-3740-5_5
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M (d) lab
(cF ) jlm

=
∑
m ′

M (d) lab
(cF ) jlm′ e

im ′γ eimαd(l)
m ′m

(
−π

2

)
(7.16)

=
[
U (d)

jl d(l)
0m

(
−π

2

)
+ V (d)

jl ei2γ d(l)
2m

(
−π

2

)

+V (d)
jl e−i2γ d(l)

(−2)m

(
−π

2

)]
eimα. (7.17)

Here, π/2 rotates the beam into the horizontal plane, α is the angle between the beam
and the laboratory x-axis at t = 0, and γ is the angle between the polarization and
the horizontal plane.

Since p-polarized light resonates in the cavity in our setup, γ = 0. α for each arm
in the counterclockwise mode is

α =

⎧⎪⎪⎨
⎪⎪⎩

−ξ + ζ for the arm A
0 for the arm B
−ξ − ζ − π for the arm C
−ξ − π/2 for the arm D

The label of each arm are the same as the one defined in Fig. 5.3. Also, the index of

refraction n = 1 for all the arms except for B. Note that V (d)
jl = 0 when n = 1, so it

only contributes to the arm B. From these values, we can calculateM (d) lab
(cF ) jlm

for each
arm.

Next, we combine the results for the individual arms to get the M (d) lab
(cF ) jlm

matrix
for the counterclockwise mode,

M (d) lab
(cF ) jlm

= LA

Lopt
M (d) A

(cF ) jlm
+ nLB

Lopt
M (d) B

(cF ) jlm

+ LC

Lopt
M (d) C

(cF ) jlm
+ LD

Lopt
M (d) D

(cF ) jlm
, (7.18)

which is the optical path length weighted average (Lopt ≡ LA + nLB + LC + LD).
Comparison of this equation with Eq. (5.20) gives the rough relation between δc and

M (d) lab
(cF ) jlm

.

TheM (d) lab
(cF ) jlm

matrix for the clockwise mode is found to be reversing the direction
of the beam in each arm. This is equivalent to adding π to each α angle, and this gives
an extra factor of eimπ = (−1)m . So, the difference between the counterclockwise
mode and clockwise mode is given by

ΔM (d) lab
(cF ) jlm

= (
1 − (−1)m

)
M (d) lab

(cF ) jlm
. (7.19)

http://dx.doi.org/10.1007/978-981-10-3740-5_5
http://dx.doi.org/10.1007/978-981-10-3740-5_5
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7.1.2.2 Extraction of the Camouflage Coefficients from the Signal

The relationship between the camouflage coefficients (c¬(d)

F )
(0E)
jlm and the modulation

amplitudes defined inEqs. (5.22)–(5.24) can be derived by comparing these equations
with Eq. (7.9). The modulation amplitudes are given by

CC
mrm⊕ = 2ηmrηm⊕Re[Amrm⊕ + Amr(−m⊕)], (7.20)

CS
mrm⊕ = −2ηmr Im[Amrm⊕ − Amr(−m⊕)], (7.21)

SCmrm⊕ = −2ηm⊕ Im[Amrm⊕ + Amr(−m⊕)], (7.22)

SS
mrm⊕ = −2Re[Amrm⊕ − Amr(−m⊕)], (7.23)

where η0 = 1/2, and ηm = 1 when m �= 0.
In this thesis, we restricted ourselves to extract modulation amplitudes formr and

m⊕ up to 3. Since the camouflage coefficients for d = 6 introduce monopole, dipole
and quadrupole structures of the anisotropy, while d = 8 also give hexapole and
octupole structures, we can restrict ourselves to consider up to d = 8 coefficients.
Our experiment is only sensitive to parity-odd dipole and hexapole anisotropies.

The relationship between the camouflage coefficients of d = 6 and d = 8 and
the modulation amplitudes for our optical ring cavity is summarized in Table7.2.
Comparison of this table with Table5.1 gives naive picture of the multipole structure
of the SME camouflage coefficients. As predicted by the multipole structure, only
m⊕ = 0, 1 contribute for d = 6 and m⊕ = 0, 1, 2, 3 contribute for d = 8.

7.2 Feedback Control

Here we briefly summarize the basics of the feedback control needed for reading this
thesis. For more comprehensive understanding, see, for example, Ref. [9].

7.2.1 Openloop Transfer Function

In a feedback control, we measure fluctuation of the output of the system and try to
regulate the output by applying a force in an opposite direction to the system input.
Typical feedback control loop in a block diagram is shown in Fig. 7.1. First, some
external disturbance x0 is converted into an error signal ver with a sensor transfer
function H . From this error signal, the amount of feedback vfb is determined with a
servo filter F , and an actuator A puts the feedback into the input of the sensor. By
this feedback, original fluctuation x0 is regulated to xst.

Here, the residual fluctuation xst can be written with transfer functions of the
sensor, the filter, and the actuator as

http://dx.doi.org/10.1007/978-981-10-3740-5_5
http://dx.doi.org/10.1007/978-981-10-3740-5_5
http://dx.doi.org/10.1007/978-981-10-3740-5_5
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Fig. 7.1 Block diagram
showing principle of a
typical feedback control

xst = x0 − AFHxst. (7.24)

Thus, by defining G ≡ AFH ,

xst = 1

1 + G
x0 (7.25)

follows. As you can see from this equation, the fluctuation can be reduced by making
the gain |G| high. This G is called the openloop transfer function.

However, G is generally a function of Fourier frequency, and it is not possible to
make |G| high at all the frequency bands. Generally, |G| is low at higher frequency,
and the frequency band which is |G| > 1 is called a control band. The frequency
where |G| = 1 is called a unity gain frequency (UGF).

As you can guess from Eq. (7.25) that xst diverges when G = −1, UGF is impor-
tant for determining the stability of a servo. There is a number of ways for the
determination, but the Nyquist stability criterion is often used for the determination
of the stability of the system with relatively simple transfer functions. If the phase
margin of G, such as arg(G) + 180◦ is larger than ∼30◦, we can say that feedback
control is stable.

A real part and an imaginary part of a transfer function has the Kramers–Kronig
relation, and it is not possible to manage both a high gain and a large phase margin.
We have to design a transfer function of a servo filer circuit F , so that a high gain is
achieved at the frequency band we need, and also realize a stable feedback control
loop.

7.2.2 Feedback Control and Noise

In ideal cases we considered in the previous section, making loop gain G high suf-
ficiently suppresses the fluctuation. However, in real cases, contamination of noises
in the servo loop limits the achievable residual fluctuation.

In this section, we consider about the sensor noise nS and the noise from the
filter circuit nF as shown in Fig. 7.2. We discuss about how to estimate the residual
fluctuation in the presence of noises, and about how to estimate the original external
disturbances.
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Fig. 7.2 Block diagram of a
feedback control with noise
injections and a monitor
signal

7.2.2.1 In-Loop and Out-of-loop

Feedback control loop try to control the error signal to be 0, but since the error signal
includes sensor noises, the error signal in the servo loop (in-loop error signal) does
not tell you the actual residual fluctuation.

For example, the error signal in the feedback system in Fig. 7.2 is

ver = H [x0 − A(Fver + nF)] + nS, (7.26)

so,

ver = H

1 + G
x0 − H A

1 + G
nF + 1

1 + G
nS. (7.27)

Thus, the estimated residual fluctuation from the error signal is

x (er)
st = ver

H
= 1

1 + G
x0 − A

1 + G
nF + 1

1 + G

1

H
nS. (7.28)

When |G| 
 1, x (er)
st ∼ 0.

However, actually,

xst = ver − nS
H

= 1

1 + G
x0 − A

1 + G
nF − G

1 + G

1

H
nS, (7.29)

and even if |G| 
 1, xst ∼ nS/H and not xst ∼ 0. Therefore, by using the in-loop
error signal alone, we underestimate the residual fluctuation.

In order to estimate the residual fluctuation, we need the monitor signal vmn which
is out-of-loop, as shown in Fig. 7.2. vmn can be written as

vmn = H ′xst + nS′ , (7.30)

and the estimated residual fluctuation from this monitor signal is
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x (mn)
st = vmn

H ′ = 1

1 + G
x0 − A

1 + G
nF − G

1 + G

1

H
nS + 1

H ′ nS′ . (7.31)

When |G| 
 1, x (mn)
st ∼ nS/H + nS′/H ′ and it will be a better estimation of the

residual fluctuation.

7.2.2.2 Estimating External Disturbance

Feedback control is also used when the sensor only has a high sensitivity at limited
range. By regulating the fluctuation, we can operate the sensor with a high sensitivity
and a linear response. The estimation of the external disturbance can be done by using
the feedback signal which the control loop added in order to suppress the fluctuation.

The feedback signal vfb can be calculated by the similar control loop calculation
we have done above, and it is

vfb = FH

1 + G
x0 + F

1 + G
nS + 1

1 + G
nF. (7.32)

Thus, the estimated external disturbance is

x (fb)
0 = 1 + G

FH
vfb = x0 + 1

H
nS + A

G
nF. (7.33)

Estimation of the external disturbance from the feedback signal is good especially
where the frequency region with |G| > 1, since the effect of nF is small. Outside the
control band, however, nF term become large and the estimation is not so accurate.

So, outside the control band, it is better to use the error signal for estimating the
external disturbance. From Eq. (7.27), the external disturbance estimated from the
error signal is

x (er)
0 = 1 + G

H
ver = x0 + 1

H
nS + AnF. (7.34)

7.3 Optical Cavities and Hänsch–Couillaud Method

We used the Hänsch–Couillaud (HC) method [10, 11] for extracting the error signal
for locking the laser frequency to the cavity resonant frequency. Here, we briefly
discuss about properties of optical cavities. Then, we explain the mechanism of
waveplates which changes the polarization state of the beam, and show the principle
of the HC method. Lastly, we discuss about advantages of the use of the HC method
in our experiment.
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7.3.1 Optical Cavities

Optical cavities aremade frommultiplemirrors that are put against each other, so that
the beam circulates inside many times. Especially, a cavity which consist from two
parallel mirrors is called a Fabry-Perot cavity, and a cavity which consist from more
than three mirrors is called a ring cavity. In a Fabry-Perot cavity, standing waves are
formed inside the cavity, and in a ring cavity, travelling waves are formed.

Optical cavities has resonant frequencies, and only the beam with those laser
frequencies resonates inside the cavity. Here, we summarize about this feature.

7.3.1.1 Reflectivity and Transmissivity

Consider an optical cavity which consist from three mirrors M1, M2, and M3, as
shown inFig. 7.3. The round-trip length of this cavity is L , and amplitude reflectivities
and amplitude transmissivities of each mirror are ri and ti , respectively.

If we set the electrical field amplitude of the incident laser beam to M1 to be Ei,
the amplitude of the reflected light can be calculated by considering the propagation
of the beam as

Er = Ei(−r1) + Eit
2
1 r3r2e

−iφ + Eit
2
1 r

2
3r

2
2r1e

−2iφ + Eit
2
1 r

3
3r

3
2r

2
1 e

−3iφ + · · ·

= Ei(−r1) + Eit
2
1 r3r2e

−iφ
∞∑
n=0

(
r3r2r1e

−iφ
)n

= Ei

(
−r1 + t21 r2r3e

−iφ

1 − r1r2r3e−iφ

)
. (7.35)

Here, φ is the phase change accumulated when the beam makes a round-trip inside
the cavity. Using the angular frequency of the laser beam, φ can be written as

φ ≡ Lω

c
. (7.36)

Similarly, the amplitude of the transmitted beam from M3 can be calculated as

Fig. 7.3 Three mirror
optical cavity
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Et = Eit1t3e
−iφ2 + Eit1r3r2r1t3e

−i(φ+φ2) + Eit1(r3r2r1)
2t3e

−i(2φ+φ2) + · · ·
= Eit1t3e

−iφ2

∞∑
n=0

(
r3r2r1e

−iφ
)n

= Ei
t1t3e−iφ2

1 − r1r2r3e−iφ
. (7.37)

Here, φ2 ≡ l2ω/c is the phase change of the beam accumulated between M1 and
M3.

Thus, the amplitude reflectivity rcav and the amplitude transmissivity tcav of this
ring cavity are

rcav(φ) = −r1 + t21 r2r3e
−iφ

1 − r1r2r3e−iφ
, (7.38)

tcav(φ) = t1t3e−iφ2

1 − r1r2r3e−iφ
. (7.39)

Now, from Eqs. (7.35) and (7.37), intensities of the reflected light and transmitted
light are

Pr = |Er|2

= (r2r3 − r1)2 + 4r1r2r3 sin2 (φ/2)

(1 − r1r2r3)2 + 4r1r2r3 sin2 (φ/2)
|Ei|2, (7.40)

Pt = |Et|2

= (t1t3)2

(1 − r1r2r3)2 + 4r1r2r3 sin2 (φ/2)
|Ei|2. (7.41)

Here, we assumed r21 + t21 = 1.
When the intensity of the transmitted light is at the maximum, the intensity of the

beam inside the cavity (intra-cavity power) is at the maximum, and we say that the
incident laser beam resonates in the cavity. The resonance condition is

φ = 2πm, (7.42)

where m is a natural number. Therefore, from Eq. (7.36), the resonant frequencies
of this cavity are

ν = mc

L
. (7.43)

Figure7.4 shows absolute value and phase of an amplitude reflectivity of an optical
cavity near resonance. As we can clearly see from this plot, small change in φ

drastically change the phase of the reflected light. This is because the change in φ

is amplified when the beam circulates inside the cavity many times. Because of this
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Fig. 7.4 Absolute value and phase of an amplitude reflectivity of an optical cavity

feature, we can use optical cavities as interferometers to measure the frequency of
the incident beam ν.

However, as we can see from Eq. (7.36), we cannot distinguish if the change in
φ is from the laser frequency change or the cavity round-trip length change. So,
the fluctuation in the cavity length change is generally a noise source for frequency
measurements.

7.3.1.2 Free Spectral Range and Finesse

Figure7.5 is a plot made from Eq. (7.41), and shows the change in the intensity
of the transmitted light from an optical cavity, with respect to the laser frequency
change. If we fix the cavity length L and change the laser frequency, the intensity of
the transmitted light changes periodically. This period is called a free spectral range
(FSR), and from Eq. (7.43), it is written as

νFSR = c

L
. (7.44)

Also, the full width at half maximum (FWHM) of the transmitted power peak can
be obtained from Eq. (7.41), by solving
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Fig. 7.5 Intensity of transmitted light from an optical cavity. Calculated under the conditions
r1 = r3, r2 = 1, and F = 10

1

1 + 4r1r2r3
(1 − r1r2r3)2

sin2
(

πLνFWHM

2c

) = 1

2
. (7.45)

Here, if we assume
πLνFWHM

2c
= πνFWHM

2νFSR
� 1, we can Taylor expand sin term

and

νFWHM ≡ c(1 − r1r2r3)

πL
√
r1r2r3

(7.46)

can be obtained.
The ratio between νFSR and νFWHM shows the sharpness of the resonance, and the

ratio is called a finesse. The expression of the finesse is

F = νFSR

νFWHM
= π

√
r1r2r3

1 − r1r2r3
. (7.47)

The finesse is larger, and the resonance is sharperwhen the reflectivities of themirrors
are close to 1. Since we usually make the finesse of the cavity sufficiently larger than
1, the assumption we made above is appropriate.
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7.3.2 Waveplates

Waveplates are optics which transforms polarization states of laser beams by putting
phase difference between two orthogonal optical axes with birefringent crystal. Half-
wave plates put the phase difference of π , which corresponds to half of a wavelength.
Quarter-wave plates put the phase difference of π/2, which corresponds to quarter
of a wavelength. Two optical axes are called fast axis and slow axis, and a waveplate
put a certain amount of phase delay to the slow axis with respect to the fast axis.

To show the behavior of waveplates, here we use Jones Calculus which Jones
invented in 1941 [12]. In this method we set the amplitude of the incident electrical
field to the waveplate to be

Ein =
(
Es

E p

)
, (7.48)

where Es and E p is the s-polarized and the p-polarized component, respectively.
We calculate how this vector is transformed by waveplates.

If the slow axis of the waveplate is rotated by θ compared with the s-polarization
axis, the transformation matrix R(θ) from the s/p-polarization basis and fast/slow
basis is (

Efast

Eslow

)
= R(θ)

(
Es

E p

)
=

(
cos θ sin θ

− sin θ cos θ

)(
Es

E p

)
. (7.49)

Half waveplates give the phase difference between fast and slow axes by π , so the
transformation matrix for half waveplates in s/p-polarization basis can be written as

WH(θH) = R−1(θH)

(
1 0
0 e−iπ

)
R(θH)

=
(
cos 2θH sin 2θH
sin 2θH − cos 2θH

)
. (7.50)

Thus, as shown in Fig. 7.6a, linearly polarized light will be transformed to line sym-
metric linearly polarized light where the symmetrical axis is the fast axis. Since we
can rotate the fast axis freely, we can shift the polarization direction of the linearly
polarized light.

Similarly, quarter waveplates give the phase difference between fast and slow axes
by π/2, so the transformation matrix is,

WQ(θQ) = R−1(θQ)

(
1 0
0 e−iπ/2

)
R(θQ)

=
(

cos2 θQ − i sin2 θQ sin θQ cos θQ(1 + i)
sin θQ cos θQ(1 + i) sin2 θQ − i cos2 θQ

)
. (7.51)

Although it is not obvious from the equation, as shown in Fig. 7.6b, linearly polarized
light injected to a quarter-wave plate will be transformed to an elliptically polarized
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(a) Half-wave plate (b) Quarter-wave plate

Fig. 7.6 Transformation of polarization state with waveplates

light. The two axes of the ellipse are the fast and slow axes components of the incident
light.

7.3.3 The Hänsch–Couillaud Method

In order to lock the frequency of the laser to a cavity resonance, we need an error
signal which is proportional to the laser frequency change and is zero at the cavity
resonance. For example, the phase of the cavity reflected light as we saw in Fig. 7.4
can be considered as one of candidates for this kind of signal, but photo detectors
cannot directly measure the phase of the light. So, by mixing a component which
is not resonant to the cavity, and by making a interference of that with the cavity
reflection of the resonant light component. The cavity reflection of the resonant
component has the phase information accumulated when making a round-trip inside
the cavity, and we compare the phase with anti-resonant component by interference.

For the anti-resonant component, several candidates can be considered, but the
HC method uses the orthogonally polarized component with respect to the resonant
polarized component. This method can be used for polarization selective cavities,
such as ring cavities with odd number of mirrors.

In this section, we will describe the principle of the HC method in the single-pass
and double-pass configurations. We will also discuss about the advantages of the HC
method over other methods.
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7.3.3.1 Principle

In the HC method, there are several configurations for placing waveplates, but here
we consider the configuration used in our experiment, as shown in Fig. 7.7. The
incident beam to the ring cavity is linearly polarized and the polarization direction
is adjusted with the half-wave plate as

Ei =
(
Es
i

E p
i

)
=

(
cos θ

sin θ

)
E0 (7.52)

Using the amplitude reflectivity and transmissivity for s-polarized and p-polarized
beam of the three mirrors, rσ

i , and tσi (i = 1, 2, 3, σ = s, p), from Eq. (7.38), the
amplitude reflectivities of the ring cavity are

r scav(φ) = −r s1 + (t s1)
2r s2r

s
3e

−iφ

1 − r s1r
s
2r

s
3e

−iφ
(7.53)

r p
cav(φ) = r p

1 + (t p1 )2r p
2 r

p
3 e

−iφ

1 + r p
1 r

p
2 r

p
3 e

−iφ
. (7.54)

Here, φ is the phase change accumulated when the beam makes a round-trip inside
the cavity, and is given by Eq. (7.36). Some terms in the equations have different
signs because sings of the mirror reflectivities are different between polarizations.
From this reason, if the laser frequency is at the cavity resonance for s-polarized
light, and thus e−iφ � 1, the reflectivity for p-polarized light is

r p
cav � r p

1 + (t p1 )2r p
2 r

p
3

1 + r p
1 r

p
2 r

p
3

= 1 − (1 − r p
1 )(1 − r p

2 r
p
3 )

1 + r p
1 r

p
2 r

p
3

� 1. (7.55)

This means that the cavity is anti-resonant for p-polarized light.

Fig. 7.7 Single-pass optical
configuration of the
Hänsch–Couillaud method
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Therefore, from this polarization selectivity, cavity reflectivity near resonance can
be written as

Er =
(
Es
r

E p
r

)
=

(
r scav(φ) cos θ

r p
cav(φ) sin θ

)
E0 �

(
r scav(φ) cos θ

sin θ

)
E0. (7.56)

If we split this beam with a polarizing beam splitter (PBS), resonant s-polarized
component and anti-resonant p-polarized component do not interfere, but if we put
a rotated quarter-wave plate in front of the PBS, they interfere. When the slow axis
of the quarter-wave plate is tilted by θQ with respect to the s-polarization axis, the
transmitted light from the quarter-wave plate is

E′
r = WQ(θQ)

(
Es
r

E p
r

)
. (7.57)

For simplicity, here we set θQ to be at the optimal point 45◦. The equation above
will be

E′
r = WQ(π/4)

(
Es
r

E p
r

)

= 1

2

(
(1 − i)(Es

r + i E p
r )

(1 + i)(Es
r − i E p

r )

)
. (7.58)

Thus, if we split this beam by a PBS and detect the s-polarization and the p-
polarization components by different photo detectors, the intensity of the beam
injection onto each photo diode can be written as

PPDs =
(
1

2
|1 − i ||Es

r + i E p
r |

)2

= PDC + Re(Es
r (i E

p
r )∗), (7.59)

PPDp =
(
1

2
|1 + i ||Es

r − i E p
r |

)2

= PDC − Re(Es
r (i E

p
r )∗). (7.60)

Here, PDC is the DC component, and by defining |E0|2 ≡ P0, this can be written as

PDC = 1

2
(|Es

r |2 + |E p
r |2)

= 1

2
P0

[
(r s2r

s
3 − r s1)

2 + 4r s1r
s
2r

s
3 sin

2 (φ/2)

(1 − r s1r
s
2r

s
3)

2 + 4r s1r
s
2r

s
3 sin

2 (φ/2)
cos2 θ + sin2 θ

]
. (7.61)

This DC component is not zero at at the cavity resonance φ = 2πm, and is
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Fig. 7.8 Cavity transmitted beam intensity and the error signal of the Hänsch–Couillaud method

PDC|φ=2πm = 1

2
P0

[
(r s2r

s
3 − r s1)

2

(1 − r s1r
s
2r

s
3)

2
cos2 θ + sin2 θ

]
. (7.62)

On the other hand, Re(Es
r (i E

p
r )∗) is zero at the cavity resonance, and thus we

can get the error signal which is zero at the cavity resonance by taking a differential
signal of each photo detector output. This differential signal can be written down as

Pdiff ≡ PPDs − PPDp
= 2Re(Es

r (i E
p
r )∗)

= −2P0 cos θ sin θ
(t s1)

2r s2r
s
3 sin φ

1 + (r s1r
s
2r

s
3)

2 − 2r s1r
s
2r

s
3 cosφ

. (7.63)

Since it is always Pdiff = 0 when the laser frequency is prefectly locked to the cavity
resonant frequency, this error signal has immunity to the laser intensity noise in
principle. Also, the slope of this error signal near cavity resonance is

∂Pdiff
∂φ

∣∣∣∣
φ=2πm

= −2P0 cos θ sin θ
(t s1)

2r s2r
s
3

(1 − r s1r
s
2r

s
3)

2
. (7.64)

So, this error signal is linear to φ, and is suitable for the laser frequency lock. This
is the principle of the HC method.

Figure7.8 shows the actual error signal Pdiff and the cavity transmitted beam
intensity. The shape of the error signal looks like a differential of transmitted beam
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intensity, and we can see that the error signal is linear to φ near cavity resonance.
We have also plotted the error signal when the angle of the quarter-wave plate θQ
is not 45◦ in Fig. 7.8. If θQ is not 45◦, the error signal will not be zero at the cavity
resonance. This is because the DC component of the incident beam is not canceled
out by taking the differential signal of two photo detectors, and the error signal will
lose its immunity to the laser intensity noise.

Also, as we can see from Eq. (7.64), the amplitude of the error signal can be
changed by adjusting the polarization direction θ of the cavity incident beam with
the half-wave plate. The slope of the error signal is at its maximum when θ = 45◦,
which gives cos θ sin θ = 1/2. However, transmitted light intensity is at itsmaximum
and reflected beam intensity is at its minimum when θ = 0, and generally, signal to
noise ratio is larger when θ is slightly off from zero.

Equations we show above can be used for general triangular cavities, but if we
set θ = 45◦, and set r s2 = 1 and r s1 = r s3, as in our experiment, Eqs. (7.62) and (7.64)
can be simplified to

PDC|φ=2πm = 1

4
P0 (7.65)

∂Pdiff
∂φ

∣∣∣∣
φ=2πm

= 1

π
P0F (7.66)

Here, F is the finesse for the s-polarized light and is

F = π
√
r s1r

s
2r

s
3

1 − r s1r
s
2r

s
3

= πr s1
(t s1)

2
. (7.67)

7.3.3.2 Use in Double-Pass Configuration

Aswe can see by comparing Eqs. (7.50) and (7.51), passing through the same quarter-
wave plate twice is equivalent to a half-wave plate. Thus, when applying the HC
method in the double-pass configuration, placing wavelates as shown in Fig. 7.9
works. From the polarization selectivity of the cavity, transmitted light is linearly
polarized, but the quarter-wave plate placed in between the cavity and the reflection
mirror makes anti-resonant polarization component.

7.3.3.3 Advantages

Toacquire the error signalwhich is proportional to the difference between the incident
laser frequency and the cavity resonant frequency, one of the most popular method
is the Pound-Drever-Hall (PDH) method [13]. In the PDH method, we give phase
modulation to the incident light, and use phase modulation sidebands generated for
anti-resonant component. By acquiring the beat signal between this sidebands and
the carrier which is resonant, the error signal can be obtained.
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Fig. 7.9 Double-pass optical configuration of the Hänsch–Couillaud method

For PDHmethod, the frequencies of the sidebands should be set sufficiently away
from the resonance. The cavity we used has short cavity length, and has the full width
at half maximum of the resonant peak is large (12 MHz). So, the phase modulation
frequency needed is as high as roughly 100 MHz, and the PDH method is not handy
for our experiment. The PDHmethod needs a phase modulator, a fast photo detector,
and high speed op-amps, but the HC method does not.

We also used the HC method for acquiring the Lorentz violation signal with
the double-pass configuration. In the double-pass configuration, we use the cavity
transmitted beam which has less higher order modes for the error signal acquisition.
As compared with the PDH method which deforms the spatial mode when giving
a phase modulation, the HC method is especially suitable for use in double-pass
configurations [14].

Note that here we use a termmode to say a spatial mode of a laser beam. Intensity
distribution of an electrical field of a laser beam from a source is ideally Gaussian
distribution in a plane perpendicular to the optical axis. This mode is called a funda-
mental mode, but actual laser beams are not perfectly in a fundamental mode, and has
higher order modes. Optical cavities have mode selectivity when radius of curvatures
of consistingmirrors and distances betweenmirrors are appropriately designed, since
only fundamental modes resonates in those cavities. For more detailed discussion,
see, for example, Refs. [1, 2].

7.4 Laser Frequency Actuation Efficiency Measurement

In the laser source we used in our experiment, there is a laser cavity made of a fiber,
and the cavity length can be modulated with a piezoelectric transducer. In this way,
we can modulate the laser frequency of the output beam. We locked the frequency
of the laser to the counterclockwise resonant frequency of the ring cavity using this
laser frequency actuation mechanism.

The efficiency of this laser frequency actuation, such as the change in the laser
frequency per voltage put on the piezoelectric transducer can be measured with an
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asymmetric Michelson interferometer. Here, we present the principle of this mea-
surement and the actual measurement result.

7.4.1 Asymmetric Michelson Interferometer

In aMichelson interferometer, the beam from the laser source is split into two arms by
a beamsplitter, and each of those is reflected by an endmirror toward the beamsplitter.
Two beams are combined there and makes interference fringes depending on the
phase difference.

Let’s consider a Michelson interferometer shown in Fig. 7.10. Using the angular
frequency of the laser ω, an electric field of the incident beam can be written as

Ein = E0e
iωt . (7.68)

If we set the phase change accumulated when making a round trip between the
beamsplitter and the mirror MX, MY, as φx, φy, respectively, the recombined beam
onto the photo diode can be expressed as

EPD = 1

2
E0e

i(ωt−φx) − 1

2
E0e

i(ωt−φy). (7.69)

Fig. 7.10 Michelson interferometer

Fig. 7.11 The setup for measuring the actuation efficiency of the laser frequency. SG signal gen-
erator, FRM Faraday rotator mirror
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Here, we assumed ideal case in which the beamsplitter splits beam exactly in half,
and the reflectivity of the mirrors MX and MY are 1.

The laser power on the photo diode can then be written as

PPD = |EPD|2 = 1

2
Pin(1 − cosφ−). (7.70)

Here, φ− ≡ φx − φy and

φ− = 2l−ω

c
= 4πl−ν

c
, (7.71)

where l− is the length difference between two arms and ν is the laser frequency.
When the length difference between two arms changes by δl−, and the laser

frequency changes by δν, this phase difference changes by

δφ− = φ− − 4π(l− + δl−)(ν + δν)

c
� 4πδl−ν

c
+ 4πl−δν

c
. (7.72)

Therefore, the change in δl− gives PPD change. This property can be used for the
precise measurement of change in distances, so Michelson interferometers are used
for devices such as gravitational wave detectors.

In gravitational wave detectors, we make the length difference between two arms
to be l− � 0, so that the laser frequency fluctuation δν does not change PPD and
affect the length measurement. However, if we intentionally make l− to be large,
PPD changes with the laser frequency change. We used this asymmetric Michelson
interferometer to measure the actuation efficiency of the laser frequency.

7.4.2 Measurement Result

Figure7.11 is the schematic of the setup for measuring the actuation efficiency of
the laser frequency. We measured the power change in the output of the fiber made
asymmetric Michelson interferometer, with respect to the voltage applied on the
piezoelectric transducer in the laser source.

Assume the voltage applied on the piezoelectric transducer to be ΔV and this
created the laser frequency change of Δν. From Eq. (7.72), the change in the phase
difference between two arms Δν can be written as

Δφ− = 4πnl−Δν

c
, (7.73)

where n is the refractive index of the fiber. One period change in PPD correspond to
the change in the phase difference of Δφ− = 2π . So, the laser frequency actuation
efficiency A can be written with ΔV needed to change PPD for one period,
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A = Δν

ΔV
= c

2nl−
1

ΔV
. (7.74)

By inserting the refractive index of the fiber n = 1.47, arm asymmetry introduced
l− = 1 m, and the measured value of ΔV ,

A = 12.9 MHz/V (7.75)

was obtained. This is the actuation efficiency of the laser frequency by the piezo-
electric transducer in the fiber laser source we used for our experiment. The total
uncertainty in this measurement is estimated to be 5%.

7.5 Photos of the Apparatus

Here are some photos of our experimental apparatus (Figs. 7.12, 7.13, 7.14, 7.15,
7.16 and 7.17).

Fig. 7.12 The entire appearance of the apparatus. The vacuum enclosure on the turntable covered
with black sheet is themain optical component, and the laser source is placed on top. Some electrical
circuits and web camera are also put on the optical table. The rack on the left has the PZT driver
and the data logger we used for the data acquisition. The rack on the right has the motor driver and
the PC for controlling the motor for the turntable
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Fig. 7.13 Optics inside the vacuum enclosure. The fiber collimator is mounted on the left. The ring
cavity with pentagonal spacer is mounted on themiddle. The black box on the bottom has the photo
detectors for extracting the error signals. The silver box on the top left has the photo detectors for
monitoring the laser intensity. All the optics are fixed on a single aluminum plate

Fig. 7.14 The spacer and the ring cavity. The spacer made of Super Invar has holes for the optical
path and for placing the silicon piece. The mirrors are fixed on the spacer with aluminum plates.
The silicon piece is also fixed with a rubber and a aluminum plate on top
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Fig. 7.15 The silicon piece.
The edge surfaces look
purple when viewed from an
inclined direction because of
the anti-reflection coating.
Its size is 5 × 10 × 20 mm,
and was fabricated by
Okamoto Optics

Fig. 7.16 The laser source,
vacuum enclosure, and the
turntable. The turntable was
made of an aluminum plate
and the motor, and it is fixed
on the optical table. The
vacuum enclosure with the
optical setup inside is
covered with a black sheet
for light shielding. The laser
source is placed on top of the
vacuum enclosure, and the
beam is fed into the
enclosure with a fiber. The
cables for extracting the
signals and providing power
are hang from the top. The
little box beneath the
turntable has the photo
interrupter for obtaining the
home signal. There is also a
sensor on the optical table for
monitoring the temperature
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Fig. 7.17 The motor driver
and the PC for controlling
the motor. The box on the
top left with a print “VCB” is
the motor driver. The silver
box on the right is the
switching circuit for power.
Application for controlling
the motor and monitoring the
motor signals are opened in
the PC
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